DOI QR코드

DOI QR Code

Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements

  • Rai, Santosh Kumar (Department of Mechanical Engineering, SRM Institute of Science and Technology, NCR Campus) ;
  • Kumar, Pardeep (Department of Mechanical Engineering, Meerut Institute of Engineering and Technology) ;
  • Panwar, Vinay (Mechanical Engineering Department, Netaji Subhas University of Technology)
  • 투고 : 2020.08.31
  • 심사 : 2021.05.20
  • 발행 : 2021.11.25

초록

The present paper studies the thermal-hydraulic behaviour of the rectangular supercritical natural circulation loop (SCNCL) using numerical model of one dimensional. Then the results of this model is confirmed with experimental and benchmark results. Variations with several geometric parameters like loop diameter, riser length, and heater length and operating conditions like heater inlet enthalpy, pressure, friction factor, and inlet and exit loss coefficient on steady-state performance are investigated for various orientations like HHHC, HHVC, VHVC and VHHC of the heater and cooler. The chances of existing static instability (Ledinegg excursion) has been investigated, which reveals that it can arise only in a low inlet enthalpy condition, far from the suggested various orientations of heater and cooler.

키워드

참고문헌

  1. G. Morrison, D. Ranatunga, Thermosyphon circulation in solar collectors, Sol. Energy 24 (2) (1980) 191. https://doi.org/10.1016/0038-092X(80)90392-8
  2. X. Cheng, T. Schulenberg, Heat transfer at supercritical pressures - literature review and application to an HPLWR, Energ. Tech. 6609 (2001).
  3. S.J. Bushby, G. Dimmick, R. Du_ey, N. Spinks, K. Burrill, P. Chan, Conceptual designs for advanced, high-temperature candu reactors, in: Proceedings of the First International Symposium on Supercritical Water-Cooled Reactors, design and technology, 2000.
  4. V. Silin, V. Voznesensky, A. Afrov, The light water integral reactor with natural circulation of the coolant at supercritical pressure b-500 skdi, Nucl. Eng. Des. 144 (2) (1993) 327-336. https://doi.org/10.1016/0029-5493(93)90148-3
  5. H.H. Bau, K. Torrance, Transient and steady behavior of an open, symmetrically-heated, free convection loop, Int. J. Heat Mass Tran. 24 (4) (1981) 597-609. https://doi.org/10.1016/0017-9310(81)90004-1
  6. K. Torrance, Open-loop thermosyphons with geological applications, J. Heat Tran. 101 (4) (1979) 677-683. https://doi.org/10.1115/1.3451056
  7. H.R. McKee, Thermosiphon reboilers - a review, Ind. Eng. Chem. 62 (12) (1970) 76-82. https://doi.org/10.1021/ie50732a008
  8. Y. Zvirin, A review of natural circulation loops in pressurized water reactors and other systems, Nucl. Eng. Des. 67 (2) (1982) 203-225. https://doi.org/10.1016/0029-5493(82)90142-X
  9. R. Greif, Natural circulation loops, J. Heat Tran. 110 (4b) (1988) 1243-1258. https://doi.org/10.1115/1.3250624
  10. M.K.S. Sarkar, A.K. Tilak, D.N. Basu, A state-of-the-art review of recent advances in supercritical natural circulation loops for nuclear applications, Ann. Nucl. Energy 73 (2014) 250-263. https://doi.org/10.1016/j.anucene.2014.06.035
  11. Santosh Kumar Rai, Goutam Dutta, A review of recent applications of supercritical fluid in natural circulation loops for nuclear reactor, Int. J. Appl. Eng. Res. 23 (2018) 195-204, 9.
  12. L.R. Thippeswamy, A. Kumar Yadav, Heat transfer enhancement using CO2 in a natural circulation loop, Sci. Rep. 10 (2020) 1507. https://doi.org/10.1038/s41598-020-58432-6
  13. Walter Ambrosini, et al., Stability of supercritical fluid flow in a single-channel natural-convection loop, Nucl. Eng. Des. 238 (24) (2005) 1963-1972.
  14. Walter Ambrosini, Medhat Sharabi, Dimensionless parameters in stability analysis of heated channels with fluids at supercritical pressures, Nucl. Eng. Des. 238 (8) (2008) 1917-1929. https://doi.org/10.1016/j.nucengdes.2007.09.008
  15. W.S. Yang, N. Zavaljevski, Preliminary Investigation of Power-Flow Instabilities of Supercritical Water Reactor, ANL, 2003 (Technical Report).
  16. W.S. Yang, N. Zavaljevski, Effect of water rods and heat transfer correlations on SCWR stability, ANL, 2004 (Technical Report).
  17. B. Zappoli, Near-critical fluid hydrodynamics, C. R. Mecanique 331 (2003) 713-726. https://doi.org/10.1016/j.crme.2003.05.001
  18. I.L. Pioro, H.F. Khartabil, R.B. Duffey, Heat transfer to supercritical fluids flowing in channels empirical correlations (survey), Nucl. Eng. Des. 230 (2004) 69-91. https://doi.org/10.1016/j.nucengdes.2003.10.010
  19. J.A. Boure, A.E. Bergles, L.S. Tong, Review of two phase flow instability, Nucl. Eng. Des. 25 (1973) 165-192. https://doi.org/10.1016/0029-5493(73)90043-5
  20. L.C. Ruspini, C.P. Marcel, A. Clausse, Two-phase flow instabilities: a review, Int. J. Heat Mass Tran. 71 (2014) 521-548. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.047
  21. L.S. Tong, Y.S. Tang, Boiling Heat Transfer and Two Phase Flow, second ed., Taylor and Francis, 1997.
  22. Jiyang Yu, et al., Analysis of Ledinegg flow instability in natural circulation at supercritical pressure, Prog. Nucl. Energy 53 (2011) 775-779, 6. https://doi.org/10.1016/j.pnucene.2011.04.001
  23. S.K. Rai, P. Kumar, V. Panwar, Computational analysis of static flow instabilities in supercritical natural circulation loop, in: KIIT Thermo 2020 - International Conference on Thermofluids, jan, 2020.
  24. G. Dutta, C. Zhang, J. Jiang, Numerical analysis of flow induced density wave oscillations in CANDU supercritical water reactor, Nucl. Eng. Des. 286 (2015) 150-162. https://doi.org/10.1016/j.nucengdes.2015.02.007
  25. A. Saikiran Pegallapati, Prashanth Banoth, Ramgopal Maddali, Dynamic model of supercritical CO2 based natural circulation loops with fixed charge, Appl. Therm. Eng. 169 (2020) 114-906.
  26. V. Chatoorgoon, Stability of supercritical fluid flow in a single-channel natural-convection loop, Int. J. Heat Mass Tran. 44 (2001) 1963-1972. https://doi.org/10.1016/s0017-9310(00)00218-0
  27. V. Chatoorgoon, A. Voodi, P. Upadhye, The stability boundary for supercritical flow in natural-convection loops: Part II: CO2 and H2, Nucl. Eng. Des. 235 (24) (2005) 2581-2593. https://doi.org/10.1016/j.nucengdes.2005.06.004
  28. P.K. Vijayan, M. Sharma, D.S. Pilkhwal, D. Saha, R.K. Sinha, A comparative study of single-phase, two-phase, and supercritical natural circulation in a rectangular loop, J. Eng. Gas Turbines Power 132 (2010) 102913-102916. https://doi.org/10.1115/1.4000866
  29. P.K. Vijayan, M. Sharma, D.S. Pilkhwal, Steady State and Stability Char-Acteristics of a Supercritical Natural Circulation Loop (SPNCL) with CO2,BARC/2013/E/003, 2013.
  30. B.T. Swapnalee, P.K. Vijayan, M. Sharma, D.S. Pilkhwal, Steady state flow and static instability of supercritical natural circulation loops, Nucl. Eng. Des. 245 (2012) 99-112. https://doi.org/10.1016/j.nucengdes.2012.01.002
  31. M. Sharma, P.K. Vijayan, D.S. Pilkhwal, D. Saha, R.K. Sinha, Linear and nonlinear stability analysis of a supercritical natural circulation loop, J. Eng. Gas Turbines Power 132 (10) (2010) 102904. https://doi.org/10.1115/1.4000342
  32. M. Sharma, P.K. Vijayan, D.S. Pilkhwal, Y. Asako, Steady state and stability characteristics of natural circulation loops operating with carbon dioxide atsupercritical pressures for open and closed loop boundary conditions, Nucl. Eng. Des. 265 (2013b) 737-754. https://doi.org/10.1016/j.nucengdes.2013.07.023
  33. G. Dutta, C. Zhang, J. Jiang, Numerical analysis of flow induced density wave oscillations in CANDU supercritical water reactor, Nucl. Eng. Des. 286 (2015) 150-162. https://doi.org/10.1016/j.nucengdes.2015.02.007
  34. G. Dutta, C. Zhang, J. Jiang, Analysis of parallel channel instabilities in the CANDU supercritical water reactor, Ann. Nucl. Energy 83 (2015) 264-273. https://doi.org/10.1016/j.anucene.2015.04.023
  35. Rai Santosh Kumar, Dutta G and Sheorey T, Stability analysis of supercritical water natural circulation loop with vertical heater and cooler, Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), December 27-30, 2017, BITS Pilani, Hyderabad, India.
  36. R. Upadhyay, S.K. Rai, D. Dutta, Numerical analysis of density wave instability and heat transfer deterioration in a supercritical water reactor, J. Mech. Sci. Technol. 32 (3) (2018) 1063-1070. https://doi.org/10.1007/s12206-018-0208-7
  37. Goutam Dutta, Jagdeep B. Doshi, A characteristics-based implicit finite-difference scheme for the analysis of instability in water cooled reactors, Nuclear Engineering and Technology 40 (2008) 477-488, 6. https://doi.org/10.5516/NET.2008.40.6.477
  38. P.K. Jain, Rizwan-uddin, Numerical analysis of supercritical flow instabilitiesin a natural circulation loop, Nucl. Eng. Des. 238 (2008) 1947-1957. https://doi.org/10.1016/j.nucengdes.2007.10.034
  39. B.L. Zuber, L. Stark, Saccadic suppression: elevation of visual threshold associated with saccadic eye movements, Exp. Neurol. 16 (1966) 65-79, 1. https://doi.org/10.1016/0014-4886(66)90087-2
  40. W. Ambrosini, M. Sharabi, Dimensionless parameters in stability analysis of heated channels with fluids at supercritical pressures, Nucl. Eng. Des. 238 (8) (2008) 1917-1929. https://doi.org/10.1016/j.nucengdes.2007.09.008
  41. S.K. Rai, P. Kumar, V. Panwar, Mathematical and numerical investigation of Ledinegg flow excursion and dynamic instability of natural circulation loop at supercritical condition, Ann. Nucl. Energy 155 (2021) 108129. https://doi.org/10.1016/j.anucene.2021.108129
  42. S.K. Rai, P. Kumar, V. Panwar, Numerical analysis of influence of geometry and operating parameters on Ledinegg and dynamic instability on supercritical water natural circulation loop, Nucl. Eng. Des. 369 (2020) 110830. https://doi.org/10.1016/j.nucengdes.2020.110830

피인용 문헌

  1. Influence of Thermal and Morphological Behaviour on Biomass Waste Materials during Pyrolysis vol.321, 2021, https://doi.org/10.1051/e3sconf/202132101005