• 제목/요약/키워드: Heater and cooler orientation

검색결과 2건 처리시간 0.016초

Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements

  • Rai, Santosh Kumar;Kumar, Pardeep;Panwar, Vinay
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3597-3611
    • /
    • 2021
  • The present paper studies the thermal-hydraulic behaviour of the rectangular supercritical natural circulation loop (SCNCL) using numerical model of one dimensional. Then the results of this model is confirmed with experimental and benchmark results. Variations with several geometric parameters like loop diameter, riser length, and heater length and operating conditions like heater inlet enthalpy, pressure, friction factor, and inlet and exit loss coefficient on steady-state performance are investigated for various orientations like HHHC, HHVC, VHVC and VHHC of the heater and cooler. The chances of existing static instability (Ledinegg excursion) has been investigated, which reveals that it can arise only in a low inlet enthalpy condition, far from the suggested various orientations of heater and cooler.

다공성 재생기의 방향성을 고려한 왕복유동 수치해석 (Numerical analysis in oscillating flow considering orientation of porous media regenerator)

  • 양문흠;박상진;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.