DOI QR코드

DOI QR Code

A Study on the High Sensitivity Electrical Muscle Stimulation (EMS) Pad Using E-TEXTILE

E-TEXTILE을 이용한 고감성 전기 근육 자극(EMS)패드의 연구

  • 연은지 (숭실대학교 스마트웨어러블공학과) ;
  • 김주용 (숭실대학교 유기신소재파이버공학과)
  • Received : 2021.05.21
  • Accepted : 2021.08.09
  • Published : 2021.09.30

Abstract

EMSCT (Electrical Muscle Stimulation Conductive Textile) is an electrical muscle stimulation pad that can compensate for ease of use and comfort, which are disadvantages of conventional hydrogel pads used in electrical muscle stimulation (EMS). With the concentration with SWCNT (Single-Walled Carbon Nanotube) and the number of impregnation processes, EMSCT was tested by giving conductivity to five fabrics (radirons, neoprene, spandex cushions, poly100%, and vergamo). The padding process with SWCNT was performed, and the alternating current measurement indicated that the most similar alternating current with hydrogel was the Vergamo fabric of SWCNT:=2:1. Furthermore, the usability evaluation of convenience, usability, and psychological satisfaction results in increased usability of EMSCT compared with conventional hydrogel pads.

본 연구에서는 전기 근육 자극(electrical muscle stimulation, EMS)에 사용되는 기존의 하이드로겔 패드의 단점인 사용 편의성, 쾌적성 등을 보완할 수 있는 e-textile (electronic textile)을 이용한 전기 근육 자극(electrical muscle stimulation, EMS) 패드인 EMSCT (electrical muscle stimulation conductive textile)를 연구를 하고자 하였다. SWCNT (Single-Walled Carbon Nanotube)와 H2O의 농도 및 함침 공정 횟수를 변수로 하여, EMSCT는 5가지 직물(라디론, 네오프렌, 스판쿠션, 폴리100%, 베르가모)에 전도성을 부여하여 실험이 진행되었다. SWCNT (Single-Walled Carbon Nanotube)와 H2O을 이용한 패딩 공정을 거쳤으며, 교류 측정 결과 하이드로겔과 가장 유사한 교류를 나타내는 것은 SWCNT:H2O = 2:1의 베르가모 원단이라는 결과를 얻을 수 있었다. 또한, 편의성, 사용성, 심리적 만족성에 관한 사용성 평가를 통해 기존 하이드로겔 패드에 비해 EMSCT가 좋은 사용성을 가진다는 결과를 얻을 수 있다.

Keywords

Acknowledgement

이 (성과물)은 산업통상자원부 '산업혁신인재성장지원사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임(2021년 산업 융합형 웨어러블 스마트 디바이스 전문인력 양성사업, 과제번호: P0002397).

References

  1. Alon, G., McCombe, S. A., Koutsantonis, S., Stumphauzer, L. J., Burgwin, K. C., Parent, M. M., Bosworth, R. A. (1987). Comparison of the effects of electrical stimulation and exercise on abdominal musculature. Journal of Orthopaedic & Sports Physical Therap, 8(12), 567-573. DOI: 10.2519/jospt.1987.8.12.567
  2. Cho, H. K., & Lee, J. H. (2008). The development of usability evaluation criterion for sensor based smart clothing. Fashion & Textile Research Journal, 10(4), 473-478.
  3. Hasegawa, S., Kobayashi, M., Arai, R., Tamaki, A., Nakamura, T., & Moritani, T. (2011). Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. Journal of Electromyography and Kinesiology, 21(4), 622-630. DOI: 10.1016/j.jelekin.2011.01.005
  4. Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. DOI: 10.1038/363603a0
  5. Knight, J. F., Baber, C., Schwirtz, A., & Bristow, H. W. (2002). The comfort assessment of wearable computers. In Iswc, 2, 65-74. DOI: 10.1109/ISWC.2002.1167220
  6. Lake, D. A. (1992). Neuromuscular electrical stimulation. Sports Medicine, 13(5), 320-336. DOI: 10.2165/00007256-199213050-00003
  7. Maffiuletti, N. A., Minetto, M. A., Farina, D., & Bottinelli, R. (2011). Electrical stimulation for neuromuscular testing and training: State-of-the art and unresolved issues. DOI: 10.1007/s00421-011-2133-7
  8. Park, J. -H., & Kim, J. -Y. (2019). A study on the development of sleep monitoring smart wear based on fiber sensor for the management of sleep apnea. Korean Society for Emotion and Sensibility, 22(1), 89-100. DOI: 10.14675/kjsos.2018.22.1.89
  9. Park, J. -H., Kim J. -S., & Kim, J. -Y. (2020) Development of smartphone control jacket using textile touch sensor. Fashion Business, 24(5), 140-157. DOI: 10.12940/jfb.2020.24.5.140
  10. Park, S. (2004). A development of design prototype of digital wear for the physically disabled (Unpublished master's thesis). Yonsei University, Seoul, Korea.
  11. Popovic, D. B. (2014). Advances in functional electrical stimulation (FES). Journal of Electromyography and Kinesiology, 24(6), 795-802. DOI: 10.1016/j.jelekin.2014.09.008
  12. Scremin, A. M., Kurta, L., Gentili, A., Wiseman, B., Perell, K., Kunkel, C., & Scremin, O. U. (1999). Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil, 80(12), 1531-1536. DOI: 10.1016/s0003-9993(99)90326-x
  13. Tong, R. K., Ng, M. F., & Li, L. S. (2006). Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 87(10), 1298-1304. DOI: 10.1016/j.apmr.2006.06.016
  14. Wade, D. T., Wood, V. A., Heller, A., Maggs, J., & Langton Hewer, R. (1987). Walking after stroke. Measurement and recovery over the first 3 months. Scandinavian Journal of Rehabilitation Medicine, 19(1), 25-30.