DOI QR코드

DOI QR Code

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University) ;
  • Ni, Guorong (College of Land Resources and Environment, Jiangxi Agricultural University) ;
  • Zhao, Xiaoyan (College of Bioscience and Bioengineering, Jiangxi Agricultural University) ;
  • Wang, Fei (College of Bioscience and Bioengineering, Jiangxi Agricultural University) ;
  • Qu, Mingren (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University)
  • Received : 2021.05.20
  • Accepted : 2021.08.19
  • Published : 2021.10.28

Abstract

Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.

Keywords

Acknowledgement

This study was supported by funding obtained from China Agriculture Research System of MOF and MARA (CARS-37) and the Postgraduate Innovation Special Foundation of Jiangxi Province (YC2020-B087).

References

  1. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245-249. https://doi.org/10.1016/S1074-5521(98)90108-9
  2. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, et al. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27: 77-93. https://doi.org/10.1016/j.rser.2013.06.033
  3. Judyta Strakowska, Lidia Blaszczyk, Jerzy Chelkowski. 2014. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J. Basic Microbiol. 54 Suppl 1: S2-13. https://doi.org/10.1002/jobm.201300821
  4. Liu D, Zhang R, Yang X, Xu Y, Tang Z, Tian W, et al. 2011. Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein Expr. Purif. 79: 176-86. https://doi.org/10.1016/j.pep.2011.06.008
  5. Yan J, Liu W, Li Y, Lai H, Zheng Y, Huang J, et al. 2016. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochem. Biophys. Res. Commun. 475: 8-12. https://doi.org/10.1016/j.bbrc.2016.05.012
  6. Arvind Kumar RN. 2019. Chapter 6 - Differential expression of the microbial β-1,4-xylanase, and β-1,4-endoglucanase genes. New and Future Developments in Microbial Biotechnology and Bioengineering. 95-111.
  7. Medie FM, Davies GJ, Drancourt M, Henrissat B. 2012. Genome analyses highlight the different biological roles of cellulases. Nat. Rev. Microbiol. 10: 227-234. https://doi.org/10.1038/nrmicro2729
  8. Ornella M Ontanon, S Ghio, Ruben Marrero Diaz de Villegas, Mercedes M Garrido, Paola M Talia , Csaba Feher, et al. 2019. A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem. 298: 124999. https://doi.org/10.1016/j.foodchem.2019.124999
  9. Kim HBNW, Kim HDYJ. 2015. Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655. https://doi.org/10.1007/s10529-014-1724-x
  10. D Kaiser, C Manoil, M Dworkin. 1979. Myxobacteria: cell interactions, genetics, and development. Annu. Rev. Microbiol. 33: 595-639. https://doi.org/10.1146/annurev.mi.33.100179.003115
  11. UK L. 1970. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  12. Bradford MM. 1976. A rapid and sensitive method for the quantitation quantities microgram principle of protein-dye binding. Anal. Biochem. 2: 248-254. https://doi.org/10.1016/S0003-2697(61)80008-0
  13. Miller GL. 1959. Use of dinitrosaIicyIic acid reagent for determination of reducing sugar. Anal. Chem. 3: 426-428. https://doi.org/10.1021/ac60147a030
  14. Zhang B, Liu Y, Yang H, Yan Q, Yang S, Jiang Z, et al. 2017. Biochemical properties and application of a novel β-1,3-1,4-glucanase from Paenibacillus barengoltzii. Food Chem. 234: 68-75. https://doi.org/10.1016/j.foodchem.2017.04.162
  15. Tripti Dadheech , Ravi Shah , Ramesh Pandit , Ankit Hinsu, Prakram Singh Chauhan, Subhash Jakhesara, et al. 2018. Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass. Int. J. Biol. Macromol. 113: 73-81. https://doi.org/10.1016/j.ijbiomac.2018.02.100
  16. Ozaki K, Sumitomo N, Ito S. 1991. Molecular cloning and nucleotide sequence of the gene encoding an endo-1,4-β-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 2299-2305. https://doi.org/10.1099/00221287-137-10-2299
  17. A. Bueno CRVD. 1990. Nucleotide sequence of a 1,3-1,4-β-glucanase-encoding gene in Bacillus circulans WL-12. Nucleic Acids Res. 18: 4248. https://doi.org/10.1093/nar/18.14.4248
  18. Shinoda S, Kanamasa S, Arai M. 2012. Cloning of an endoglucanase gene from Paenibacillus cookii and characterization of the recombinant enzyme. Biotechnol. Lett. 34: 281-286. https://doi.org/10.1007/s10529-011-0759-5
  19. ITO KOAS. 1991. Purification and properties of an acid endo-1,4-beta-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 41-48. https://doi.org/10.1099/00221287-137-1-41
  20. Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, et al. 2004. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J. Mol. Biol. 343: 785-795. https://doi.org/10.1016/j.jmb.2004.08.028
  21. Alzari PM, Souchon H, Dominguez R. 1996. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4: 265-275. https://doi.org/10.1016/S0969-2126(96)00031-7
  22. Baek SC, Ho T, Lee HW, Jung WK, Gang H, Kang L, et al. 2017. Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues. Appl. Microbiol. Biotechnol. 101: 4073-4083. https://doi.org/10.1007/s00253-017-8145-4
  23. Filip Van Petegem TCMM, Charles Gerday GF, Van Beeumen AJ. 2003. Cold and investigation of the structural adaptations to xylanase at 1.3 A resolution: the structure of a cold-adapted family 8. J. Biol. Chem. 278: 7531-7539. https://doi.org/10.1074/jbc.M206862200
  24. Fushinobu S, Hidaka M, Honda Y, Wakagi T, Shoun H, Kitaoka M. 2005. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125. J. Biol. Chem. 280: 17180-17186. https://doi.org/10.1074/jbc.M413693200
  25. Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, et al. 2010. Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. J. Microbiol. 48: 318-324. https://doi.org/10.1007/s12275-009-0188-5
  26. Claudia CR, Alejandro SH, Flor N RO, Yolanda GH, Gerardo Z, Maria E. HL. 2016. Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae). AMB Express 63. doi: 10.1186/s13568-016-0233-9.
  27. Wolfgang H. Schwarz FG, Staudenbauer WL. 1986. Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl. Environ. Microbiol. 51: 1293-1299. https://doi.org/10.1128/aem.51.6.1293-1299.1986
  28. Lee JP, Kim YA, Kim SK, Kim H. 2018. Characterization of a multimodular endo-β-1,4-glucanase (Cel9K) from Paenibacillus sp. X4 with a potential additive for saccharification. J. Microbiol. Biotechnol. 28: 588-596. https://doi.org/10.4014/jmb.1712.12047
  29. Gabriela Leila Berto, Josman Velasco, Caio Tasso Cabos Ribeiro, Leticia Maria Zanphorlin , Mariane Noronha Domingues , Mario Tyago Murakami, et al. 2019. Functional characterization and comparative analysis of two heterologous endoglucanases from diverging subfamilies of glycosyl hydrolase family 45. Enzyme Microb. Technol. 120: 23-35. https://doi.org/10.1016/j.enzmictec.2018.09.005
  30. Takeshi Ohta, Hitomi Horie, Aina Matsu-Ura, Fusako Kawai. 2019. Cloning, expression, and characterization of novel GH5 endoglucanases from Thermobifida alba AHK119. J. Biosci. Bioeng. 127: 554-562. https://doi.org/10.1016/j.jbiosc.2018.10.015
  31. Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, et al. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta 1570: 174-180. https://doi.org/10.1016/S0304-4165(02)00194-0
  32. Lin Zhang YFHZ. 2013. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLos One 8: e82437. https://doi.org/10.1371/journal.pone.0082437
  33. Li X, Xia J, Zhu X, Bilal M, Tan Z, Shi H. 2019. Construction and characterization of bifunctional cellulases: caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochem. Eng. J. 151: 107363. https://doi.org/10.1016/j.bej.2019.107363
  34. Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. 2005. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol. Lett. 248: 9-15. https://doi.org/10.1016/j.femsle.2005.05.009
  35. Valenzuela SV, Lopez S, Biely P, Sanz-Aparicio J, Pastor FIJ. 2016. The glycoside hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides. Appl. Environ. Microbiol. 82: 5116-5124. https://doi.org/10.1128/AEM.01329-16
  36. Berlemont R, Martiny AC. 2013. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79: 1545-1554. https://doi.org/10.1128/AEM.03305-12
  37. Bhat A, Riyaz-Ul-Hassan S, Ahmad N, Srivastava N, Johri S. 2013. Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles 17: 229-239. https://doi.org/10.1007/s00792-012-0510-8
  38. Ogura JTUO, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T. 2006. Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci. Biotechnol. Biochem. 70: 2420-2428. https://doi.org/10.1271/bbb.60157
  39. Zhang G, Li S, Xue Y, Mao L, Ma Y. 2012. Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16: 35-43. https://doi.org/10.1007/s00792-011-0403-2
  40. Kupski L, Pagnussatt FA, Buffon JG, Furlong EB. 2014. Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Appl. Biochem. Biotechol. 172: 458-468. https://doi.org/10.1007/s12010-013-0518-2
  41. Ueda M, Ito A, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K. 2014. Cloning and expression of the cold-adapted endo-1,4-β-glucanase gene from Eisenia fetida. Carbohydr. Polym. 101: 511-516. https://doi.org/10.1016/j.carbpol.2013.09.057
  42. Jae Pil Lee HWLH, Sung Kyum Kim HK. 2018. Characterization of truncated endo-β-1,4-glucanases from a compost metagenomic library and their saccharification potentials. Int. J. Biol. Macromol. 115: 554-562. https://doi.org/10.1016/j.ijbiomac.2018.04.102
  43. Ma L, Aizhan R, Wang X, Yi Y, Shan Y, Liu B, et al. 2020. Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds. AMB Express. 10: 42. https://doi.org/10.1186/s13568-020-00975-y
  44. Ornella M Ontanon, Silvina Ghio, Ruben Marrero Diaz de Villegas, Mercedes M Garrido, Paola M Talia, Csaba Feher, et al. 2019. A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem. 298: 124999. https://doi.org/10.1016/j.foodchem.2019.124999
  45. Ghio S, Bradanini MB, Garrido MM, Ontanon OM, Piccinni FE, Marrero Diaz De Villegas R, et al. 2020. Synergic activity of Cel8Pa β-1,4 endoglucanase and Bg1Pa β-glucosidase from Paenibacillus xylanivorans A59 in beta-glucan conversion. Biotechnol. Rep. 28: e526.
  46. Na HB, Jung WK, Jeong YS, Kim HJ, Kim SK, Kim J, et al. 2015. Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655. https://doi.org/10.1007/s10529-014-1724-x