DOI QR코드

DOI QR Code

Immuno-enhancing and Anti-obesity Effect of Abelmoschus manihot Root Extracts

금화규(Abelmoschus manihot) 뿌리 추출물의 면역증진 및 항비만효과

  • Yu, Ju Hyeong (Department of Medicinal Plant Resources, Andong National University) ;
  • Geum, Na Gyeong (Department of Medicinal Plant Resources, Andong National University) ;
  • Ye, Joo Ho (Department of Medicinal Plant Resources, Andong National University) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
  • 유주형 (국립안동대학교 생약자원학과) ;
  • 금나경 (국립안동대학교 생약자원학과) ;
  • 여주호 (국립안동대학교 생약자원학과) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2021.07.09
  • Accepted : 2021.08.05
  • Published : 2021.10.01

Abstract

In this study, we investigated in vitro immune-enhancing and anti-obesity activity of Abelmoschus manihot roots (AMR) in mouse macrophage RAW264.7 cells and mouse adipocytes 3T3-L1 cells. AMR increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. The inhibition of toll like receptor (TLR) 2 and 4 blocked AMR-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of mitogen-activated protein kinases (MAPKs) signaling pathway reduced AMR-mediated production of immunostimulatory factors. From these results, AMR is considered to have immune-enhancing activity through TLR2/4-mediated activation of MAPKs signaling pathway. In addition, AMR inhibited lipid accumulation and reduced the protein level such as CCAAT enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin and fatty acid binding protein 4 (FABP4) associated with lipid accumulation in 3T3-L1 cells, indicating that AMR may have anti-obesity activity. Based on these results, AMR is expected to be used as a potential functional agent for immune enhancement and anti-obesity.

본 연구에서 금화규 뿌리 추출물(AMR)이 마우스 대식세포인 RAW264.7 세포의 활성화 유도를 통한 면역증진 활성과 마우스 지방전구세포인 3T3-L1 세포의 지질축적억제를 통한 항비만 활성을 평가하였다. 금화규 뿌리 추출물(AMR)은 전반적으로 RAW264.7 세포에서 TLR2/TLR4의 자극을 통해 p38과 JNK를 활성화시켜 NO, iNOS, IL-1𝛽, IL-6, TNF-𝛼와 같은 면역증진 인자의 발현을 증가시키는 것으로 판단된다. 그러나 IL-6의 경우, p38과 JNK 활성화에 의존하지 않는 것으로 확인되어 TLR2/4에 의한 다른 신호전달이 관여하는 것으로 사료되어 추가적인 연구가 필요하다. 또한, 금화규 뿌리 추출물(AMR)은 PPAR𝛾의 과대발현을 억제하여 지방전구세포의 성숙한 지방세포로의 분화를 억제하고, 성숙한 지방세포에서 CEBP𝛼, PPAR𝛾, perilipin-1, FABP4, adiponectin의 발현을 억제하여 지방세포 내 지질 형성 및 축적을 억제하는 것으로 판단된다. 본 연구를 통해 구명된 결과들은 금화규 뿌리 추출물(AMR)이 향후 면역증진 및 항비만을 위한 보조제 또는 건강 기능성 식품과 의약품으로의 개발 및 활용이 가능할 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야 기초연구사업 지역대학우수과학자 후속지원사업(NRF-2019R1D1A3A03103685)과 중점연구소지원사업(NRF-2018R1A6A1A03024862)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Alagawany, M., Y.A. Attia, M.R. Farag, S.S. Elnesr, S.A. Nagadi, M.E. Shafi, A.F. Khafaga, H. Ohran, A.A. Alaqil and M.E. Abd El-Hack. 2021. The strategy of boosting the immune system under the COVID-19 pandemic. Front. Vet. Sci. 7: 570748. https://doi.org/10.3389/fvets.2020.570748
  2. Bandaru, P., H. Rajkumar and G. Nappanveettil. 2013. The impact of obesity on immune response to infection and vaccine: an insight into plausible mechanisms. Endocrinol. Metab. Synd. 2:2.
  3. Bogdan, C., M. Rollinghoff and A. Diefenbach. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12(1):64-76. https://doi.org/10.1016/S0952-7915(99)00052-7
  4. Cuadrado, A. and A.R. Nebreda. 2010. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429(3):403-417. https://doi.org/10.1042/BJ20100323
  5. Cuthbertson, D.J., U. Alam and A. Tahrani. 2020. COVID-19 and obesity: an opportunity for change. Ther. Adv. Endocrinol. Metab. 11:1-4.
  6. Duque, G.A. and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5:491. https://doi.org/10.3389/fimmu.2014.00491
  7. Erridge, C. 2010. Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J. Leukoc. Biol. 87(6):989-999. https://doi.org/10.1189/jlb.1209775
  8. Furuhashi, M., S. Saitoh, K. Shimamoto and T. Miura. 2014. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 8(3): 23-33.
  9. Hansen, J.S., S. De Mare, H.A. Jones, O. Goransson and K. Lindkvist-Petersson. 2017. Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci. Rep. 7(1):1-14. https://doi.org/10.1038/s41598-016-0028-x
  10. Hussain, A., K. Mahawar, Z. Xi., W. Yang and E.H. Shamsi. 2020. Obesity and mortality of COVID-19. Meta-analysis. Obes. Res. Clin. Pract. 14(4):295-300. https://doi.org/10.1016/j.orcp.2020.07.002
  11. Jeon, Y.H. and S.M. Kang. 2020. The application of Abelmoschus manihot jinhuakui extracts as cosmetic ingredient. J. Converg. Inf. Technol. 10(10):290-297. https://doi.org/10.22156/CS4SMB.2020.10.10.290
  12. Kadowaki, T. and T. Yamauchi. 2005. Adiponectin and adiponectin receptors. Endocr. Rev. 26(3):439-451. https://doi.org/10.1210/er.2005-0005
  13. Kawai, T. and S. Akira. 2007. TLR signaling. Semin. Immunol. 19(1):24-32. https://doi.org/10.1016/j.smim.2006.12.004
  14. Kopelman, P.G. 2000. Obesity as a medical problem. Nature 404:635-643. https://doi.org/10.1038/35007508
  15. Kosaraju, R., W. Guesdon, M.J. Crouch, H.L. Teague, E.M. Sullivan, E.A. Karlsson, S.S. Cherry, K. Gowdy, L.C. Bridges, L.R. Reese, P.D. Neufer, M. Armstrong, N. Reisdorph, J.J. Milner, M. Beck and S.R. Shaikh. 2017. B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection. J. Immunol. 198(12):4738-4752. https://doi.org/10.4049/jimmunol.1601031
  16. Kyriakis, J.M. and J. Avruch. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol. Rev. 92(2):689-737. https://doi.org/10.1152/physrev.00028.2011
  17. Roskoski Jr, R. 2012. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66(2):105-143. https://doi.org/10.1016/j.phrs.2012.04.005
  18. Seki, E., D.A. Brenner and M. Karin. 2012. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143(2): 307-320. https://doi.org/10.1053/j.gastro.2012.06.004
  19. Seo, H.J. and J.B. Jeong. 2020. Immune-enhancing effects of green lettuce (Lactuca sativa L.) extracts through the TLR4-MAPK/NF-κB signaling pathways in RAW264.7 macrophage cells. Korean J. Plant Res. 33(3):183-193. https://doi.org/10.7732/KJPR.2020.33.3.183
  20. Simu, S.Y., S. Ahn, V. Castro-Aceituno and D.C. Yang. 2017. Ginsenoside Rg5: Rk1 exerts an anti-obesity effect on 3T3-L1 cell line by the downregulation of PPARγ and CEBPα. Iran. J. Biotechnol. 15(4):252. https://doi.org/10.15171/ijb.1517
  21. Takeda, K. and S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16(1):3-9. https://doi.org/10.1016/j.smim.2003.10.003
  22. Wang, T. and C. He. 2020. TNF-α and IL-6: The link between immune and bone system. Curr. Drug Targets. 21(3):213-227. https://doi.org/10.2174/1389450120666190821161259
  23. Weber, A., P. Wasiliew and M. Kracht. 2010. Interleukin-1β (IL-1β) processing pathway. Sci. Signal. 3(105):2.
  24. Zhang, W. and H.T. Liu. 2002. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12(1):9-18. https://doi.org/10.1038/sj.cr.7290105