DOI QR코드

DOI QR Code

살균제 Tebuconazole이 한국산 개구리류(두꺼비, 청개구리, 참개구리) 배아 발달에 미치는 영향

Effects of fungicide tebuconazole on the embryonic development of Korean domestic frogs (Bufo gargarizans, Hyla japonica, and Pelophylax nigromaculatus)

  • 이해범 (전남대학교 대학원 생물과학.생명기술학과) ;
  • 고선근 (호남대학교 물리치료학과)
  • Lee, Hae-Bum (Graduate School of Biological Sciences and Biotechnology, Chonnam University) ;
  • Ko, Sun-Kun (Department of Physical therapy, Honam University)
  • 투고 : 2021.05.31
  • 심사 : 2021.09.06
  • 발행 : 2021.09.30

초록

국내에 서식하는 개구리들의 배아를 이용하여 살균제인 tebucoanzole의 독성을 파악하기 위해 FETAX (Frog Embryo Teratogenesis Assay-Xenopus) 기법에 따라 두꺼비(Bufo gargarizans), 청개구리(Hyla japonica), 참개구리(Pelophylax nigromaculatus)의 배아를 배양하면서 tebuconazole의 효과를 probit 분석법으로 조사하였다. 그 결과, tebuconazole의 농도에 의존하여 유생의 체장 길이는 감소하고 치사율과 기형률은 증가하였으며 tebuconazole의 teratogenic concentration (EC50)은 각각 34.4, 10.6, 14.9 mg kg-1을 나타내었고 embryo lethal concentrations (LC50)은 75.4, 38.2, 39.6 mg kg-1 을 나타내었다. Teratogenic index (TI=LC50/EC50)는 각각 2.19, 3.58, 2.65을 나타내어 두꺼비, 청개구리, 참개구리 배아 발달에 최기형성 물질로 작용함을 알 수 있었다. 이상의 결과들로 보아 tebuconazole은 낮은 농도에서 개구리 배아의 발달에 민감하게 반응하였으며 치사율, 기형률, 성장률, 기형양상 등을 기존의 연구들과 비교하였을 때 유사한 결과를 나타내어 국내 서식하는 개구리류 배아발달에 영향을 미칠 수 있는 것으로 여겨지며, 종에 따라 치사율 및 기형률, 기형양상 등의 차이를 나타내는 원인 등을 명확히 파악하기 위해서 종 특이적 특성 등을 규명하는 연구가 더 필요할 것으로 여겨진다.

In this experiment, we investigated the toxicity of tebuconazole (fungicide) using domestic frog embryos, along the FETAX (Frog Embryo Teratogenesis Assay-Xenopus) protocol. Bufo gargarizans, Hyla japonica, and Pelophylax nigromaculatus embryos were incubated, and investigation of the tebuconazole effect was performed by the probit analysis. As a result, depending on the concentrations of tebuconazole, the mortality and malformation rates were increased and larval body length was decreased. The teratogenic concentrations (EC50) of tebuconazole were 34.4mg L-1, 10.6mg L-1, and 14.9mg L-1, respectively, and the embryo lethal concentrations(LC50) of tebuconazole were 74.7 mg L-1, 38.5 mg L-1, and 39.1 mg L-1, respectively. The teratogenic index (TI) valuesof tebuconazole were 2.19, 3.58, and 2.65; thus, it showed teratogenicity in embryonic development of these three frogs. These results revealed that in this experiment, tebuconazole suppressed the development of embryos at a relatively low concentration. In addition, mortality, malformation ratios, malformation patterns, and growth rates were similar to the results from the other assay systems. Therefore, tebuconazole was thought to have an effect on the embryo development of domestic frogs. In future, it will be necessary to identify species specificity in order to the clarify the causes of differences in mortality, malformation rate, and malformation patterns depending on the species.

키워드

참고문헌

  1. ASTM. 1998. Standard Guide for Conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). ASTM E1439-98. American Society for Testing and Materials. Philadelphia, PA.
  2. Bantle JA and CL Courchesne. 1985. The combined use of genotoxicity and whole embryo teratogenecity screening assays in predicting teratogenic risks. pp.175-176. In: Proceedings of the Second International Conference on Ground-Water Quality Research. Oklahoma State University Press. Stillwater, OK.
  3. Bantle JA, DJ Fort, JR Rayburn, DJ Deyoung and SJ Bush. 1990. Further validation of FETAX: evaluation of the developmental toxicity of five known mammalian teratogens and non-teratogens. Drug Chem. Toxicol. 13:267-282. https://doi.org/10.3109/01480549009032286
  4. Bantle JA, JN Dumont, RA Finch and G Linder. 1998. Atlas of Abnormalities: a Guide the Perfomance of FETAX. Oklahoma State University. Stillwater, OK.
  5. Bantle JA, RA Finch, DT Burton, DJ Fort, DA Dawson, G Linder, JR Rayburn, M Hull, M Kumsher-King, AM Gaudet-Hull and SD Turley. 1996. FETAX interlaboratory validation study: phase III - part 1 testing. J. Appl. Toxicol. 16:517-530. https://doi.org/10.1002/(SICI)1099-1263(199611)16:6<517::AID-JAT385>3.0.CO;2-R
  6. Baris RD, SZ Cohen, NL Barnes, J Lam and Q Ma. 2010. Quantitative analysis of over 20 years of golf course monitoring studies. Environ. Toxicol. Chem. 29:1224-1236. https://doi.org/10.1002/etc.185
  7. Candela L, S Fabregat, A Josa, J Suriol, N Vigues and J Mas. 2007. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course(Girona, Spain). Sci. Total Environ. 374:26-35. https://doi.org/10.1016/j.scitotenv.2006.12.028
  8. FAO. 1994. Food and Agriculture Organization of the United Nations. Rome, Italy.
  9. Fort DJ, DA Dawson and JA Bantle. 1988. Development of ametabolic activation system for the frog embryo teratogenesis assay Xenopus (FETAX). Teratogenesis Carcinog. Mutagen. 8:251-264. https://doi.org/10.1002/tcm.1770080502
  10. Goh EH and AW Neff. 2003. Effects of fluoride on Xenopus embryo development. Food Chem. Toxicol. 41:1501-1508. https://doi.org/10.1016/S0278-6915(03)00166-2
  11. Hoke RA and GT Ankley. 2005. Application of frog embryo teratogenesis assay Xenopus to ecological risk assessment. Environ. Toxicol. Chem. 24:2677-2690. https://doi.org/10.1897/04-506R.1
  12. Hwang YG, MJ Lee, YH Lee, SW Cheong and CS Yoon. 2010. Toxic effects of fungicide tebuconazole on the early development of African clawed frog, Xenopus laevis. J. Environ. Sci. 19:1001-1012.
  13. Johnson RE and EP Volpe. 1973. Patterns and experiments in developmental biology. pp. 7-9, 215-227. In: Observation and Experiments on the Living Frog Embryo. William C. Brown Co. Dubuque, IA.
  14. Li D, M Liu, Y Yang, H Shi, J Zhou and D He. 2016. Strong lethality and teratogenicity of strobilurins on Xenopus tropicalis embryos: Basing on ten agricultural fungicides. Environ. Pollut. 208:868-874. https://doi.org/10.1016/j.envpol.2015.11.010
  15. KCPA. 2015. Guideline of Crop Protection Products (pesticides). Korea Crop Protection Association. Seoul.
  16. Mathew WW. 1986. Atlas of Descripttive Embryology. Forth edition. Macmillan Pub. Co. New York. p. 54.
  17. Ministry of Environment. 2011. Amphibians & Reptiles of Namdo. Ministry of Environment. Sejong, Korea.
  18. Morgan MK, PR Scheuerman, CS Bishop and RA Pyles. 1996. Teratogenic potential of atrazine and 2.4-D using FETAX. J. Toxicol. Environ. Health Part A 48:151-168. https://doi.org/10.1080/009841096161401
  19. NIER. 2020. Guideline for the Safe Use of Pesticides on Golf Course Lawn. National Institute of Environmental Research. Incheon, Korea.
  20. Presutti C, C Vismara, M Camatini and G Bernardini. 1994. Eco-toxicological effects of a nonionic detergent (Triton DF-16) assayed by ModFETAX. Bull. Environ. Contam. Toxicol. 53:405-411. https://doi.org/10.1007/BF00197233
  21. Suzuki T, H Kondo, K Yaguchi, T Maki and T Suga. 1998. Estimation of leachability and persistence of pesticides at golf courses from point-source monitoring and model to predict pesticide leaching to groundwater. Environ. Sci. Technol. 32:920-929. https://doi.org/10.1021/es970751+
  22. Taxvig C, U Hass, M Axelstad, M Dalgaard, J Boberg, HR Andeasen and AM Vinggaard. 2007. Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxyconazole. Toxicol. Sci. 100:464-473. https://doi.org/10.1093/toxsci/kfm227
  23. Taxvig C, AM Vinggaard, U Hass, M Axelstad, S Metzdorff and C Nellemann. 2008. Endocrine disrupting properties in vivo of widely used azole fungicides. Int. J. Androl. 31:170-177. https://doi.org/10.1111/j.1365-2605.2007.00838.x
  24. Tomlin CD. 2000. The Pesticide Manual: A World Compendium (No. ed. 12). British Crop Protection Council. Alton, UK.
  25. Yang SY, JB Kim, MS Min, JH Suh and YJ Kang. 2000. Monograph of Korean Amphibia. Academybook Press. Seoul.