DOI QR코드

DOI QR Code

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS

RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구

  • An, Nam-Hyun (Department of Naval Architecture and Ocean Engineering, Koje University) ;
  • Gu, Bon-Kuk (Department of Naval Architecture and Ocean Engineering, Changwon National University) ;
  • Park, Hui-Seung (Green-ship Research Center, Shipbuilding & Offshore Engineering Research Division, Research Institute of Medium & Small Shipbuilding) ;
  • Jang, Ho-Yun (Green-ship Research Center, Shipbuilding & Offshore Engineering Research Division, Research Institute of Medium & Small Shipbuilding)
  • 안남현 (거제대학교 조선해양공학과) ;
  • 구본국 (창원대학교 조선해양공학과) ;
  • 박희승 (중소조선연구원 조선해양연구본부 친환경선박연구센터) ;
  • 장호윤 (중소조선연구원 조선해양연구본부 친환경선박연구센터)
  • Received : 2021.08.02
  • Accepted : 2021.10.28
  • Published : 2021.10.31

Abstract

The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

4차 산업시대를 맞이하여 많은 공학 분야에서 IoT(Internet of Things)기술의 연계는 매우 중요한 쟁점이다. 최근 조선소에서도 디지털 조선, 스마트 팩토리 등의 개념을 구체화하고 있는 추세이다. 한편 자동차, 비행기 등에서 자율주행을 구현하는 연구는 매우 활발하고 일정 부분 상용의 형태로 나타나고 있다. 본 연구는 오픈 소스 아두파일럿 기반의 FC(Flight Controller) 및 RTK(Real Time Kinematic) GPS(Global Positioning System)를 이용하여 자율 주행 임무를 수행하는 보트의 주행성에 관한 연구로서 잔잔한 호수에서 실해역 실험을 수행하였으며 보트의 임무는 특정한 지점을 자율주행한 후 홈 위치로 스스로 돌아오는 과정에 대한 조종성 평가이다. 주어진 속도에서 기설정된 임무 궤적과 실 운항 궤적에 따른 차이를 분석하고 시스템의 보트 적용성에 대한 일련의 연구를 수행하였다. 또한 4개의 프로펠러를 가지는 OmniX 선체의 주행성을 분석하였으며 최대 48%의 주행 추적성 향상을 확인하였다.

Keywords

Acknowledgement

본 논문은 산업통상자원부 해양융복합소재산업화사업(No. 10053841) '조선해양 규정을 만족하는 섬유기반 복합소재의 그린십 상부구조 표준화 부품 개발' 과제와 중소벤처기업부 기술혁신개발사업 그린벤처 R&D(No. S3108176) '선박용 배출가스 저감을 위한 무시동 저속 추진 하이브리드 발전시스템 개발' 과제의 지원을 받아 수행되었으며, 지원에 대해 감사드립니다.

References

  1. Abdulmajeed, W. R., O. A. Athab, and I. A. Sattam(2016), Implementation and Evaluation of APM 2.6 - Controlled Quardcopter with Aerial Imagery as a Case Study, Journal of Engineering and Applied Sciences, Vol. 11, No. 19, pp. 11724-11734.
  2. Centelles, D., A Soriano, J. V. Marti, R. Marin, and P. J. Sanz(2019), Underwater Wireless Communications for Cooperative Robotics with UWSim-NET, Applied Sciences Vol. 9, No. 17, 3526, https://doi.org/10.3390/app9173526.
  3. Kim, J. and H. S. Jang(2019), Technology Trends and Preparations of Maritime Autonomous Surface Ship (MASS), The Society of Naval Architects of Korea, Vol. 56, No. 4, pp. 4-7.
  4. Lee, Y. H., S. C. Shin, J. H. Mok, and S. H. Ko(2018), Pixhawk Mission Mode Flight Control-law Structure Analysis based on Open-Source, Journal of Aerospace System Engineering, Vol. 12, No. 3, pp. 45-52. https://doi.org/10.20910/JASE.2018.12.3.45
  5. Moulton, J., N. Karapetyan, S. Bukhsbaum, C. McKinney, S. Malebary, G. Sophocleous, A. Q. Li, and I. Rekleitis(2018), An Autonomous Surface Vehicle for Long Term Operations, Conference of OCEANS 2018 MTS/IEEE Charleston, Vol. 11, No. 19, pp. 759-768.
  6. Muliadi, J. and B. Kusumoputro(2018), Neural Network Control System of UAV Altitude Dynamics and Its Comparison with the PID Control System, Journal of Advanced Transportation, Vol. 2018, pp. 1-18. https://doi.org/10.1155/2018/3823201
  7. Son, N. S. and H. K. Yoon(2009), Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV), Journal of Navigation and Port Research, Vol. 33, No. 1, pp. 35-41. https://doi.org/10.5394/KINPR.2009.33.1.035
  8. Son, N. S., K. H. Yun, and T. H. Fang(2014), System Development of Autonomous Unmanned Surface Vehicle, The Society of Naval Architects of Korea, Vol. 51, No. 2, pp. 18-22.
  9. Vasilj, J., I. Stancic, T. Grujic, and J. Music(2017), Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection, The Journal of Multimedia Information System, Vol. 4, No. 4, pp. 195-204. https://doi.org/10.9717/JMIS.2017.4.4.195