Acknowledgement
The financial support from National Natural Science Foundation of China under Grant no. 51278369 is gratefully acknowledged.
References
- Battista, R.C., Rodrigues, R.S. and Pfeil, M.S. (2003), "Dynamic behavior and stability of transmission line towers under wind forces", J Wind Eng Ind Aerodyn, 91(8), 1051-1067. https://doi.org/10.1016/S0167-6105(03)00052-7.
- Cai, Y.Z. and Wan, J.W. (2021), "Wind-resistant capacity modeling for electric transmission line towers using kriging surrogates and its application to structural fragility", Appl. Sci-Basel, 11(11), 4714. https://doi.org/10.3390/app11114714.
- Cai, Y.Z., Xie, Q., Xue, S.T., Hu, L. and Kareem, A. (2019), "Fragility modelling framework for transmission line towers under winds", Eng Struct, 191, 686-697. https://doi.org/10.1016/j.engstruct.2019.04.096.
- Charnock H (1955), "Wind stress on a water surface", Q J R Meteorolog Soc, 81(350): 639-640. https://doi.org/10.1002/qj.49708135027
- Chavas, D.R. and Lin, N. (2016), "A model for the complete radial structure of the tropical cyclone wind field part II: Wind field variability", Amer. Meteor. Soc., 73, 3093-3113. https://doi.org/10.1175/JAS-D-15-0185.1.
- Chavas, D.R., Lin, N. and Emanuel, K. (2015), "A model for the complete radial structure of the tropical cyclone wind field part I: Comparison with observed structure", Amer. Meteor. Soc., 72, 3647-3661. https://doi.org/10.1175/JAS-D-15-0014.1.
- Chen, Y. and Duan, Z.D. (2018), "A statistical dynamics track model of tropical cyclones for assessing typhoon wind hazard in the coast of southeast China", J Wind Eng. Ind. Aerod., 172, 325-340. https://doi.org/10.1016/j.jweia.2017.11.014.
- DL/T 5551-2018 (2018), Load Code for the Design of Overhead Transmission Line, Electric Power Planning & Engineering Institute, Beijing, China.
- Donelan, M., Haus, B., Reul, N., Plant, W., Stiassnie, M., Graber, H., Brown, O. and Saltzman, E. (2004), "On the limiting aerodynamic roughness of the ocean in very strong winds", Geophys. Res. Lett., 31, L18306. https://doi.org/10.1029/2004GL019460.
- Emanuel, K.A. (2011), "Self-stratification of tropical cyclone outflow part II: Implications for storm intensification", J. Atmoss Sci., 69, 988-996. https://doi.org/10.1175/JAS-D-11-0177.1.
- Emanuel, K.A. and Rotunno, R. (2011), "Self-stratification of tropical cyclone outflow Part I: Implications for storm structure", J. Atmos. Sci., 68, 2236-2249. https://doi.org/10.1175/JAS-D-10-05024.1.
- GB 50009-2019 (2019), Load Code for the Design of Building Structures (National Standard), Ministry of Construction of the People's Republic of China, Beijing, China.
- GB 50545-2010 (2010), Code for Design of 110kV~750kV Overhead Transmission Line (National Standard), China Electricity Council, Beijing, China.
- Holland, G.J., Belanger, J.I. and Fritz, A. (2011), "A revised model for radial profiles of hurricane winds", Mon. Weather Rev., 138, 4393-4401. https://doi.org/10.1175/2010MWR3317.1.
- Huang, G.Q., Zheng, H.T., Xu, Y.L. and Li, Y.L. (2015), "Spectrum models for nonstationary extreme winds", J. Struct. Eng., 141(10), 04015010. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001257.
- Huang, M.F., Lou, W., Yang, L., Sun, B., Shen, G. and Tse, K.T. (2012), "Experimental and computational simulation for wind effects on the Zhoushan transmission towers", Struct. Infrastruct. Eng., 8(8), 781-799. https://doi.org/10.1080/15732479.2010.497540.
- IEC 60826 (2003), Design Criteria of Overhead Transmission Lines, International Electro-technical Commission, Geneva, Switzerland.
- IPCC (2013), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change.
- Kareem, A. (2008), "Numerical simulation of wind effects: A probabilistic perspective", J. Wind Eng. Ind. Aerod., 96(10-11), 1472-1497. https://doi.org/10.1016/j.jweia.2008.02.048.
- Kareem, A., Tognarelli, M.A. and Gurley, K.R. (1998), "Modeling and analysis of quadratic term in the wind effects on structures", J. Wind Eng. Ind. Aerod., 74-76, 1101-1110. https://doi.org/10.1016/S0167-6105(98)00101-9.
- Li, L.X., Kareem, A., Xiao, Y.Q., Song, L.L. and Zhou, C.Y. (2015), "A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds", J. Wind Eng. Ind. Aerod., 140, 49-66. https://doi.org/10.1016/j.jweia.2014.12.008.
- Liang, S., Zou, L., Wang, D. and Cao, H. (2015), "Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system", Eng. Struct., 85, 63-72. https://doi.org/10.1016/j.engstruct.2014.11.042.
- Lin. N. and Chavas, D. (2012), "On hurricane parametric wind and applications in storm surge modeling", J. Geophys. Res., 117, D09120. https://doi.org/10.1029/2011JD017126.
- Meng, Y., Matsui, M. and Hibi, K. (1997), "A Numerical study of the wind field in a typhoon boundary layer", J. Wind Eng. Ind. Aerod., 67-68, 437-448. https://doi.org/10.1016/S0167-6105(97)00092-5.
- Paluch, M.J., Cappellari, T.T.O. and Riera, J.D. (2007), "Experimental and numerical assessment of EPS wind action on long span transmission line conductors", J. Wind Eng. Ind. Aerod., 95(7), 473-492. https://doi.org/10.1016/j.jweia.2006.09.003.
- Phadke, A.C., Martino, C.D., Cheung, K.F. and Houston, S.H. (2003), "Modeling of tropical cyclone winds and waves for emergency management", Ocean Eng, 30(4), 553-578. https://doi.org/10.1016/S0029-8018(02)00033-1.
- Riehl, H. (1954), Tropical Meteorology, McGraw-Hill.
- Schloemer, R.W. (1954), Analysis and Synthesis of Hurricane Wind Patterns Over Lake Okeechobee, Florida, Hydrometeorological Rep. 31, Department of Commerce and U.S. Army Corps of Engineers, U.S. Weather Bureau, Washington, DC.
- Shinozuka, M. and Deodatis, G. (1991), "Simulation of stochastic processes by spectral representation", Appl. Mech. Rev., 44(4), 191-204. https://doi.org/10.1115/1.3119501.
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures New York: Wiley.
- Takeuchi, M., Maeda, J. and Ishida, N. (2010), "Aerodynamic damping properties of two transmission towers estimated by combining several identification methods", J. Wind Eng. Ind. Aerod., 98(12), 872-880. https://doi.org/10.1016/j.jweia.2010.09.001.
- Tao, T.Y., Shi, P. and Wang, H. (2020), "Spectral modelling of typhoon winds considering nexus between longitudinal and lateral components", Renew. Energy 162, 2019-2030. https://doi.org/10.1016/j.renene.2020.09.130.
- Tao, T.Y. and Wang, H. (2019), "Modelling of longitudinal evolutionary power spectral density of typhoon winds considering high-frequency subrange", J. Wind Eng. Ind. Aerod., 193, 103957. https://doi.org/10.1016/j.jweia.2019.103957.
- Vaiman, M., Bell, K., Chen, Y., Chowdhury, B., Dobson, I., Hines, P. and Zhang, P. (2012), "Risk assessment of cascading outages: methodologies and challenges", IEEE Trans. Power Syst, 27(2), 631-41. https://doi.org/10.1109/TPWRS.2011.2177868.
- Vickery, P.J., Wadhera, D., Powell, M.D. and Chen, Y. (2009), "A hurricane boundary layer and wind field model for use in engineering applications", J. Appl. Meteorol. Climatol, 48, 381-404. https://doi.org/10.1175/2008JAMC1841.1.
- Wang, D.H., Chen, X.Z. and Xu, K. (2017), "Analysis of buffeting response of hinged overhead transmission conductor to nonstationary winds", Eng. Struct, 147, 567-582. https://doi.org/10.1016/j.engstruct.2017.06.009.
- Xiao, Y.F., Duan, Z.D., Xiao, Y.Q., Ou, J.P., Chang, L. and Li, Q. S. (2011), "Typhoon wind hazard analysis for southeast China Coastal Regions", Struct. Saf., 33(4-5), 286-295. https://doi.org/10.1016/j.strusafe.2011.04.003.
- Xie, Q., Cai, Y.Z. and Xue, S.T. (2017), "Wind-induced vibration of UHV transmission tower line system: wind tunnel test on aero-elastic model", J. Wind Eng. Ind. Aerod., 171, 219-29. https://doi.org/10.1016/j.jweia.2017.10.011.