DOI QR코드

DOI QR Code

고속 열 성형 유한요소해석을 활용한 CF/PEKK 열가소성 복합재 구조물 제작 공정 예측 및 검증

Evaluation of Stamp Forming Process Parameters for CF/PEKK Thermoplastic Composite Using Finite Element Method

  • Lee, Keung-In (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Choe, Hyeon-Seok (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kwak, June-Woo (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Jun-Sung (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Ju, Hyun-Woo (Korea Aerospace Industries, Ltd.) ;
  • Kweon, Jin-Hwe (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Nam, Young-Woo (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • 투고 : 2021.09.03
  • 심사 : 2021.09.30
  • 발행 : 2021.11.05

초록

본 연구에서는 유한요소법(FEM)에 기반한 CF/PEKK 열가소성 복합재 고속 열 성형 해석을 수행하였고 제작 공정을 예측 및 검증하였다. 대표적인 L 형 구조물 모델에 대해 트리밍 여유에 따른 성형성을 응력, 두께, 주름분포를 분석하였다. 그 결과, 블랭크의 트리밍 여유가 증가할수록 구조물의 성형성이 향상하는 것을 확인하였다. 특히 두께 및 주름 분포 측면에서 해석 모델과 실험 결과를 비교하여서 고속 열 성형 모델의 타당성을 검증하였다. 제작된 구조물은 시차 주사 열량 분석법 및 이미지 분석법을 통해 결정화도와 기공률이 측정되었다. 제작된 열가소성 구조물의 전 영역 기공률은 평균 0.75%, 결정화도는 약 21%로 항공기에 적용 가능한 수치로 평가되었다. 따라서 본 연구를 토대로 열가소성 복합재 고속 열 성형 공정에 대해 효과적인 예측이 가능할 것으로 판단된다.

This study presented the evaluation of the stamp forming process for L-shape CF/PEKK thermoplastic composite using the finite element model. The formability of three different trimming allowances has been examined for representative product geometry. The results showed that those manufactured by high trimming allowance showed more excellent formability in those areas. Moreover, the effects of the trimming allowances on the stress, thickness, wrinkle distributions of thermoplastic composites fabricated with the stamp forming process were evaluated. The comparison of the simulation and experimental results for the thickness and wrinkle distributions proved the accuracy of the stamp forming model. The crystallinity of the composite was performed by differential scanning calorimetry (DSC). The void content of the composite was evaluated by matrix digestion. Then, the fabricated structure was characterized and achieved high quality in crystallinity and void content. Consequently, the presented FEM modeling shows excellent potential for application in the aircraft product design process. This pragmatic approach could efficiently offer a valuable solution for the thermoplastic composite manufacturing field.

키워드

과제정보

본 연구는 산업통상자원부의 재원으로 한국산업기술진흥원의 지원을 받아 수행한 2019년 해외수주연계 항공부품산업 공정기술개발 사업(P0010341_AFP와 OoA공정기술기반 단일통로 대형민항기용 4 m 이상급 복합재 주익 스킨-스트링거 일체형 모듈 및 3 m 이상급 열가소성 복합재 동체 모듈 개발)의 지원을 받아 수행된 연구 결과입니다.

참고문헌

  1. Henning, F., Karger, L., Dorr, D., Schirmaier, F.J., Seuffert, J., and Bernath, A., "Fast Processing and Continuous Simulation of Automotive Structural Composite Components," Composites Science and Technology, Vol. 171, 2019, pp. 261-279. https://doi.org/10.1016/j.compscitech.2018.12.007
  2. Lee, J.M., Lee, C.J., Kim, B.M., and Ko, D.C., "Design of Prepreg Compression Molding for Manufacturing of CFRTP B-pillar Reinforcement with Equivalent Mechanical Properties to Existing Steel Part," International Journal of Precision Engineering and Manufacturing, Vol. 21, 2020, pp. 545-556. https://doi.org/10.1007/s12541-019-00265-z
  3. Vieille, B., Albouy, W., Chevalier, L., and Taleb, L., "About the Influence of Stamping on Thermoplastic-based Composites for Aeronautical Applications," Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 821-834. https://doi.org/10.1016/j.compositesb.2012.07.047
  4. Suemasu, H., Friedrich, K., and Hou, M., "On Deformation of Woven Fabric- Reinforced Thermoplastic Composites During Stamp-forming," Composites Manufacturing, Vol. 5, 1994, pp. 31-39. https://doi.org/10.1016/0956-7143(94)90017-5
  5. Trudel-Boucher, D., Fisa, B., Denault, J., and Gagnon, P., "Experimental Investigation of Stamp Forming of Unconsolidated Commingled E-glass/polypropylene Fabrics," Composites Science and Technology, Vol. 66, 2006, pp. 555-570. https://doi.org/10.1016/j.compscitech.2005.05.036
  6. Lebrun, G., Bureau, M.N., and Denault, J., "Thermoforming-Stamping of Continuous Glass Fiber/Polypropylene Composites: Interlaminar and Tool-Laminate Shear Properties," Industrial Materials Institute, Journal of Thermoplastic Composite Materials, Vol. 17, 2004, pp. 137-165.
  7. Ning, H., Vaidya, U., Janowski, G.M., and Husman, G., "Design, Manufacture and Analysis of a Thermoplastic Composite Frame Structure for Mass Transit," Composite Structures, Vol. 80, 2007, pp. 105-116. https://doi.org/10.1016/j.compstruct.2006.04.036
  8. Gorczyca-Cole, J.L., Sherwood, J.A., and Chen, J., "A Friction Model for Thermostamping Commingled Glass-polypropylene Woven Fabrics," Composites Part A: Applied Science and Manufacturing, Vol. 38, 2007, pp. 393-406. https://doi.org/10.1016/j.compositesa.2006.03.006
  9. Gorczyca, J., Shearwood, J., Liu, L., and Chen, J., "Modeling of Friction and Shear in Thermostamping of Composites - Part I," Journal of Thermoplastic Composite Materials, Vol. 38, 2004, pp. 1911-1929. https://doi.org/10.1177/0021998304048416
  10. Wakeman, M.D., Blanchard, P., and Manson, J.-A.E., "Void Evolution During Stamp Forming of Thermoplastic Composites," 15th International Conference on Composite Materials, 2005.
  11. Lessard, H., Lebrun, G., Benkaddour, A., and Pham, X.-T., "Influence of Process Parameters on the Thermostamping of a [0/90]12 Carbon/Polyether Ether Ketone Laminate," Composites Part A: Applied Science and Manufacturing, Vol. 70, 2015, pp. 59-68. https://doi.org/10.1016/j.compositesa.2014.12.009
  12. Liu, L., Chen, J., Gorczyca, J., and Shearwood, J., "Friction and Shear in Thermostamping of Composites-Part II," Journal of Thermoplastic Composite Materials, Vol. 38, 2004.
  13. Mallick, P.K., "Thermoplastics and Thermoplastic-matrix Composites for Lightweight Automotive Structures," Materials, Design and Manufacturing for Lightweight Vehicles (Second Edition), 2021, pp. 187-228.
  14. Mathijsen, D., "The Black Magic of Carbon Fiber Reinforced Thermoplastics," Reinforced Plastics, Vol. 59, No. 4, 2015, pp. 185-189. https://doi.org/10.1016/j.repl.2015.02.012
  15. Harrison, P., Gomes, R., and Curado-Correia, N., "Press Forming a 0/90 Cross-ply Advanced Thermoplastic Composite Using the Double-dome Benchmark Geometry," Composites Part A: Applied Science and Manufacturing, Vol. 54, 2013, pp. 56-69. https://doi.org/10.1016/j.compositesa.2013.06.014
  16. Ten Thije, R.H.W., Akkerman, R., Ubbink, M., and van der Meer, L., "A Lubrication Approach to Friction in Thermoplastic Composites Forming Processes," Composites Part A: Applied Science and Manufacturing, Vol. 42, 2011, pp. 950-960. https://doi.org/10.1016/j.compositesa.2011.03.023
  17. Hallander, P., Akermo, M., Mattei, C., Petersson, M., and Nyman, T., "An Experimental Study of Mechanisms Behind Wrinkle Development during Forming of Composite Laminates," Composites Part A: Applied Science and Manufacturing, Vol. 50, 2013, pp. 54-64. https://doi.org/10.1016/j.compositesa.2013.03.013
  18. Slange, T.K., Warnet, L.L., Grouve, W.J.B., and Akkerman, R., "Influence of Prepreg Characteristics on Stamp Consolidation," AIP Conference Proceedings, Vol. 1896, 2017, 030034.
  19. Gabrion, X., Placet, V., Trivaudey, F., and Boubakar, L., "About the Thermomechanical Behaviour of a Carbon Fibre Reinforced High-temperature Thermoplastic Composite," Composite B: Engineering, Vol. 95, 2016, pp. 386-394. https://doi.org/10.1016/j.compositesb.2016.03.068
  20. Schneeberger, C., Wong, J.C., and Ermanni, P., "Hybrid Bicomponent Fibres for Thermoplastic Composite Preforms," Composite A: Applied Science and Manufacturing, Vol. 103, 2017, pp. 69-73. https://doi.org/10.1016/j.compositesa.2017.09.008
  21. Boisse, P., Hamila, N., and Madeo, A., "Modelling the Development of Defects During Composite Reinforcements and Prepreg Forming," Philosophical Transactions Mathematical Physical and Engineering Sciences, Vol. 374, No. 2071, 2016, 20150269.
  22. Kiran, G.B., Suman, K.N.S., Rao, N.M., and Rao, R.U.M., "A Study on the Influence of Hot Press Forming Process Parameters on Mechanical Properties of Green Composites Using Taguchi Experimental Design," International Journal of Engineering, Science and Technology, Vol. 3, 2011, pp. 253-263.
  23. Benkaddour, A., Lebrun, G., and Laberge-Lebel, L., "Thermo-stamping of [0/90]n Carbon/Peek Laminates:Influence of Support Configuration and Demolding Temperature on Part Consolidation," Polymer Composites, Vol. 39, 2018, pp. 3341- 3352. https://doi.org/10.1002/pc.24354
  24. Behrens, B.A., Raatz, A., Hubner, S., Bonk, C., Bohne, F., Bruns, C., and Micke-Camuz, M., "Automated Stamp Forming of Continuous Fiber Reinforced Thermoplastics for Complex Shell Geometries," Procedia CIRP, Vol. 66, 2017, pp. 113-118. https://doi.org/10.1016/j.procir.2017.03.294
  25. Balakrishnan, V.S., Obrosov, A., Kuke, F., Seidlitz, H., and Weiss, S., "Influence of Metal Surface Preparation on the Flexural Strength and Impact Damage Behaviour of Thermoplastic FRP Reinforced Metal Laminate Made by Press Forming," Composites Part B: Engineering, Vol. 173, 2019, 106883. https://doi.org/10.1016/j.compositesb.2019.05.094
  26. Donadei, V., Lionetto, F., Wielandt, M., Offringa, A., and Maffezzoli, A., "Effects of Blank Quality on Press-Formed PEKK/Carbon Composite Parts," Matrials, Vol. 11, 2018, 1063. https://doi.org/10.3390/ma11071063
  27. Xiong, H., Hamila, N., and Boisse, P., "Consolidation Modeling during Thermoforming of Thermoplastic Composite Prepregs Hu," Matrials, Vol. 12, No. 18, 2019, pp. 2853. https://doi.org/10.3390/ma12182853
  28. Gong, Y., Song, Z., Ning, H., Hu, N., Peng, X., Wu, X., Zou, R., Liu, F., Weng, S., and Liu, Q., "A Comprehensive Review of Characterization and Simulation Methods for Thermo-stamping of 2D Woven Fabric Reinforced Thermoplastics," Composites Part B: Engineering, Vol. 203, 2020, 108462. https://doi.org/10.1016/j.compositesb.2020.108462
  29. Behrens, B.A., Hubner, S., and Neumann, A., "Forming Sheets of Metal and Fibre-reinforced Plastics to Hybrid Parts in One Deep Drawing Process," Procedia Engineering, Vol. 81, 2014, pp. 1608-1613. https://doi.org/10.1016/j.proeng.2014.10.198
  30. Vieille, B., Albouy, W., and Taleb, L., "Investigations on Stamping of C/PEEK Laminates: Influence on Meso-structure and Macroscopic Mechanical Properties under Severe Environmental Conditions," Composites Part B: Engineering, Vol. 63, 2014, pp. 101-110. https://doi.org/10.1016/j.compositesb.2014.03.025
  31. Hwang, S.F., and Hwang, K.J., "Stamp Forming of Locally Heated Thermoplastic Composites," Composites Part A: Applied Science and Manufacturing, Vol. 33, 2002, pp. 669-676. https://doi.org/10.1016/S1359-835X(02)00004-0
  32. Fernandez, I., Blas, F., and Frovel, M., "Autoclave Forming of Thermoplastic Composite Parts," Journal of Materials Processing Technology, Vol. 143-144, 2003, pp. 266-269. https://doi.org/10.1016/S0924-0136(03)00309-1
  33. Abbassi, F., Elfaleh, I., Mistou, S., Zghal, A., Fazzini, M., and Djilali, T., "Experimental and Numerical Investigations of a Thermoplastic Composite (carbon/PPS) Thermoforming," Structural Control Health Monitoring, Vol. 18, 2011, pp. 769-780. https://doi.org/10.1002/stc.491
  34. Guzman-Maldonado, E., Wang, P., Hamila, N., and Boisse, P., "Experimental and Numerical Analysis of Wrinkling during Forming of Multi-layered Textile Composites," Composite Structures, Vol. 208, 2019, pp. 213-223. https://doi.org/10.1016/j.compstruct.2018.10.018
  35. Kim, D.J., Yu, M.H., Lim, J.Y., Nam, B.G., and Kim, H.S., "Prediction of the Mechanical Behavior of Fiber-reinforced Composite Structure Considering Its Shear Angle Distribution Generated during Thermo-compression Molding Process," Composite Structures, Vol. 220, 2019, pp. 441-450. https://doi.org/10.1016/j.compstruct.2019.04.043
  36. Donderwinkel, T.G., Rietman, B., Haanappel, S.P., and Akkerman, R., "Stamp Forming Optimization for Formability and Crystallinity," AIP Conference Proceedings, Vol. 1769, 2016, 170029.
  37. Montazerian, H., Sourki, R., Ramezankhani, M., Rashidi, A., Koerber, M., and Milani, A.S., "Digital Twining of an Automated Fabric Draping Process for Industry 4.0 Applications: Part Imulti-body Simulation and Finite Element Modeling," CAMX2019, 2019, pp. 1-10.
  38. Chen, Q., Boisse, P., Park, C.H., Saouab, A., and Breard, J., "Intra/inter-ply Shear Behaviors of Continuous Fiber Reinforced Thermoplastic Composites in Thermoforming Processes," Composite Structures, Vol. 93, 2011, pp. 1692-1703. https://doi.org/10.1016/j.compstruct.2011.01.002
  39. Allaoui, S., Boisse, P., Chatel, S., Hamila, N., Hivet, G., Soulat, D., Vidal-Salle, E., "Experimental and Numerical Analyses of Textile Reinforcement Forming of a Tetrahedral Shape," Composites Part A: Applied Science and Manufacturing, Vol. 42, 2011, pp. 612-622. https://doi.org/10.1016/j.compositesa.2011.02.001
  40. Wolthuizen, D.J., Schuurman, J., and Akkerman, R., "Forming Limits of Thermoplastic Composites," Key Engineering Materials, Vol. 611-612, 2014, pp. 407-414. https://doi.org/10.4028/www.scientific.net/KEM.611-612.407
  41. Slange, T.K., Grouve, W.J.B., Warnet, L.L., Wijskamp, S., and Akkerman, R., "Towards the Combination of Automated Layup and Stamp Forming for Consolidation of Tailored Composite Components," Composites Part A: Applied Science and Manufacturing, Vol. 119, 2019, pp. 165-175. https://doi.org/10.1016/j.compositesa.2019.01.016
  42. McCool, R., Murphy, A., Wilson, R., Jiang, Z., Price, M., Butterfield, J., and Hornsby, P., "Thermoforming Carbon Fibre-reinforced Thermoplastic Composites," Journal of Materials: Design & Applications, Vol. 226, 2012, pp. 91-102.
  43. Slange, T.K., Warnet, L., Grouve, W.J.B., and Akkerman, R., "Influence of Preconsolidation on Consolidation Quality After Stamp Forming of C/PEEK Composites," AIP Conference Proceedings, Vol. 1769, 2016, 170022.
  44. Jeon, Y.J., Heo, Y.M., Yun, S.H., and Kim, D.E., "Stamping Process Design to Develop a Urea Tank Cover for Excavators Based on Sheet Metal Forming Analysis," Journal of Korea Society of Die & Mold Engineering, Vol. 14, 2020, pp. 49-55.
  45. Haanappel, S.P., Ten Thije, R.H.W., Sachs, U., Rietman, B., and Akkerman, R., "Formability Analyses of Uni-directional and Textile Reinforced Thermoplastics," Composites Part A: Applied Science and Manufacturing, Vol. 56, 2014, pp. 80-92. https://doi.org/10.1016/j.compositesa.2013.09.009
  46. Vanclooster, K., Lomov, S.V., and Verpoest, I., "Experimental Validation of Forming Simulations of Fabric Reinforced Polymers Using an Unsymmetrical Mould Configuration," Composites Part A: Applied Science and Manufacturing, Vol. 40, 2009, pp. 530-539. https://doi.org/10.1016/j.compositesa.2009.02.005
  47. Lee, J.S., Hong, S.J., Yu, W.R., and Kang, T.J., "The Effect of Blank Holder Force on the Stamp Forming Behavior of Noncrimp Fabric with a Chain Stitch," Composites Science and Technology, Vol. 67, 2007, pp. 357-366. https://doi.org/10.1016/j.compscitech.2006.09.009
  48. TORAY Cetex, "Stamp Forming Processing Guide," TORAY Cetex, USA, 2019.
  49. Aniform, Toray Cetex® TC1320 AS4D/PEKK Material Card, the netherlands, 2019.
  50. ASTM D3418. Standard Test Method for Transition Temperatures of Polymers by Differential Scanning Calorimetry.