DOI QR코드

DOI QR Code

초임계유체 조건에서 제조된 그래핀의 구조분석과 그래핀/에폭시 수지조성물의 열전도 특성

Structural Characteristics of Graphene Prepared in Supercritical Fluids and Thermal Conductivity of Graphene/Epoxy Composites

  • Oh, Weontae (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Gyuyeon (Division of Advanced Materials Engineering, Dong-Eui University)
  • 투고 : 2021.08.25
  • 심사 : 2021.09.16
  • 발행 : 2021.11.05

초록

초임계유체 조건은 별도의 환원제와 높은 열처리 공정조건 없이 산화그래핀으로부터 그래핀을 제조할 수 있다. 본 연구에서는 메탄올과 에탄올 용매의 초임계유체 조건에서 산화그래핀을 그래핀으로 변환시키는 공정을 연구하였다. 제조된 그래핀의 구조를 FE-SEM과 XRD를 사용하여 분석하였을 때, 초임계 조건에서 산화그래핀의 환원반응은 다른 변수(농도, 반응시간)보다는 용매의 변화에 더 크게 영향을 받았다. 에탄올 용매의 사용이 메탄올을 사용했을 때보다 환원반응에 더욱 좋은 결과를 보여주었다. 본 연구에서 준비된 그래핀을 20 wt%까지 에폭시수지와 혼합하여 복합수지 조성물을 제조하여, 이 조성물의 열전도특성을 분석하였다. 복합수지조성물의 열전도도는 그래핀의 함량에 비례하여 상승하였고, 에탄올 초임계 용액조건에서 제조된 그래핀이 복합수지조성물의 열전도도에 더 효과적이었다.

Graphene oxide can be reduced to graphene under supercritical fluid condition even without using a specific reducing agent or applying a high thermal process. In this study, a process for converting graphene oxide into graphene was studied under supercritical fluid conditions in methanol and ethanol solvents. When the structure of asprepared graphene was analyzed by using FE-SEM and XRD, the reduction of graphene oxide in supercritical fluid condition was more affected by the change of solvent than other variables such as concentration of graphene oxide and reaction time. The use of ethanol showed better results for the reduction than the use of methanol. The graphene prepared in this study was mixed with epoxy resin up to 20 wt.% to make composites, and the thermal conductivity of the composites were analyzed. Thermal conductivity of the composite increased proportionally with graphene loadings. The graphene prepared in supercritical ethanol condition was more effective on the thermal conductivity of the composite.

키워드

과제정보

이 논문은 2021년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2021년 산업혁신인재성장지원사업).

참고문헌

  1. Zhou, W., Yu, D., Min, C., Fu, Y., and Guo, X., "Thermal, Dielectric, and Mechanical Properties of SiC Particles Filled Linear Low-density Polyethylene Composites", Journal of Applied Polymer Science, Vol. 112, 2009, pp. 1695-1703. https://doi.org/10.1002/app.29602
  2. Lee, G.W., Kim, J., Yoon, J., Bae, J.S., Shin, B.C., Kim, I.S., Oh, W., and Ree, M., "Structural Characterization of Carboxylated Multi-walled Carbon Nanotubes", Thin Solid Films, Vol. 516, 2008, pp. 5781-5784. https://doi.org/10.1016/j.tsf.2007.10.071
  3. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., "Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide", Carbon, Vol. 45, 2007, pp. 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
  4. Vogel, F.L., "The Electrical Conductivity of Graphite Intercalated with Superacid Fluorides: Experiments with Antimony Pentafluoride", Journal of Materials Science, Vol. 12, 1977, pp. 982-986. https://doi.org/10.1007/BF00540981
  5. Hummers, W.S., and Offeman, R.E., "Preparation of Graphitic Oxide", Journal of American Chemical Society, Vol. 80, 1958, pp. 1339-1340. https://doi.org/10.1021/ja01539a017
  6. Lerf, A., He, H., Forster, M., and Klinowski, J., "Structure of Graphite Oxide Revisited", Journal of Physical Chemistry B, Vol. 102, 1998, pp. 4477-4482. https://doi.org/10.1021/jp9731821
  7. Stankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.T., and Ruoff, R.S., "Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate)", Journal of Materials Chemistry, Vol. 16, 2006, pp. 155-158. https://doi.org/10.1039/b512799h
  8. Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., and Aksay, I.A., "Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide", Journal of Physical Chemistry B, Vol. 110, 2006, pp. 8535-8539. https://doi.org/10.1021/jp060936f
  9. Eda, G., Fanchini, G., and Chhowalla, M., "Large-area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material", Nature Nanotechnology, Vol. 3, 2008, pp. 270-274. https://doi.org/10.1038/nnano.2008.83
  10. Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., and Zhang, F., "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation", Advanced Materials, Vol. 20, 2008, pp. 4490-4493. https://doi.org/10.1002/adma.200801306
  11. Ahn, K.H., Shin, N.C., Kim, M.S., Youn, Y.S., Hong, G.Y., and Lee, Y.W., "Synthesis of Ceria Nanoparticles Using Supercritical Methanol with Various Surface Modifiers", Korean Chemical Engineering Research, Vol. 50, 2012, pp. 678-683. https://doi.org/10.9713/kcer.2012.50.4.678
  12. Adschiri, T., Hakuta, Y., Sue, K., and Arai, K., "Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions", Journal of Nanoparticle Research, Vol. 3, 2001, pp. 227-235. https://doi.org/10.1023/A:1017541705569
  13. Lee, Y.W., "Power Generation Technology Using Supercritical Fluid", The Korean Society of Mechanical Engineers, Vol. 55, 2015, pp. 46-50.
  14. Rangappa, D., Sone K., Wang M., Gautam U.K., Golberg D., Itoh H., Ichihara M., and Honma, I., "Rapid and Direct Conversion of Graphite Crystals into High-Yielding, Good-Quality Graphene by Supercritical Fluid Exfoliation", Chemistry A European Journal, Vol. 16, 2010, pp. 6488-6494. https://doi.org/10.1002/chem.201000199
  15. Kong, C.Y., Song, W.-L., Meziani, M.J., Tackett II, K.N., Cao, L., Farr, A.J., Anderson, A., and Sun, Y.-P., "Supercritical Fluid Conversion of Graphene Oxides", The Journal of Supercritical Fluids, Vol. 61, 2012, pp. 206-211. https://doi.org/10.1016/j.supflu.2011.09.008
  16. Jin, F.-L., Li, X., and Park, S.-J., "Synthesis and Application of Epoxy Resins: A Review", Journal of Industrial and Engineering Chemistry, Vol. 29, 2015, pp. 1-11. https://doi.org/10.1016/j.jiec.2015.03.026
  17. Park, C.H., Lee, S.W., Park, J.W., and Kim, H.J., "Preparation and Characterization of Dual Curable Adhesives Containing Epoxy and Acrylate Functionalities", Reactive and Functional Polymers, Vol. 73, 2013, pp. 641-646. https://doi.org/10.1016/j.reactfunctpolym.2013.01.012
  18. Liu, Y., Yang, G., Xiao, H.M., Feng, Q.P., and Fu, S.Y., "Mechanical Properties of Cryogenic Epoxy Adhesives: Effects of Mixed Curing Agent Content", International Journal of Adhesion and Adhesives, Vol. 41, 2013, pp. 113-118. https://doi.org/10.1016/j.ijadhadh.2012.10.006
  19. Koo, M., Bae, J.-S., Shim, S.E., Kim, D., Nam, D.-G., Lee, J.-W., Lee, G.-W., Yeum, J.H., and Oh, W., "Thermo-dependent Characteristics of Polyimide-graphene Composites", Colloid and Polymer Science, Vol. 289, 2011, pp. 1503-1509. https://doi.org/10.1007/s00396-011-2469-x
  20. Park, S.-Y., Bae, J.-S., Kim, J.-G., Oh, M.-W., Kim, J., Nam, D.-G., Yeum, J.H., and Oh, W., "Anisotropic Thermal Characteristics of Graphene-embedded Polyimide Composite Sheets", Polymers & Polymer Composites, Vol. 24, 2016, pp. 315-321. https://doi.org/10.1177/096739111602400502
  21. Choi, H., Choi, Y.-J., Sung, C., and Oh, W., "Structural and Thermal Properties of Polysulfone Membrane Including Graphene", Membrane Journal, Vol. 28, 2018, pp. 37-44. https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.37
  22. Kim, D., Oh, W., Kim, J., Nam, D.-G., Jang, J., and Bae, J.-S., "Electrical Anisotropies of Carbon-nanotube-embedded Graphene Composite Films", Journal of the Korean Physical Society, Vol. 65, 2014, pp. L429-L435.
  23. Kim, J., Nam, D.-G., Yeum, J.H., Suh, S., and Oh, W., "Characterization of Graphite Oxide Reduced by Thermal and/or Chemical Treatments", Transactions on Electrical and Electronic Materials, Vol. 16, 2015, pp. 274-279. https://doi.org/10.4313/TEEM.2015.16.5.274