DOI QR코드

DOI QR Code

Metallization and superconductivity of hydrides under high pressure

  • Kim, Duck Young (Center for High Pressure Science and Technology Advanced Research)
  • Received : 2021.08.31
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

Hydrogen, the lightest and the most abundant element in the universe becomes a mainstay of contemporary condensed matter physics, which is largely because its metallization is regarded as the holy grail of high-pressure physics and it is also due to recent observations of high Tc superconductivity in hydrogen-dense compounds at extremely high pressure. Contemporary static high-pressure technique is not enough to realize the metallization of solid hydrogen and hydrogen-dense compounds may significantly reduce the required transition pressure providing an excellent proxy study. In this brief review, I will introduce recent achievements of high-pressure study in solid hydrogen and hydrides.

Keywords

Acknowledgement

This work was supported by NSFC of China (Grant 11774015)

References

  1. R. Golser, et al., "Experimental and theoretical evidence for long-lived molecular hydrogen anions H2- and D2-," Phys. Rev. Lett., vol. 94, pp. 223003, 2005. https://doi.org/10.1103/PhysRevLett.94.223003
  2. Hubert Gnaser and R. Golser, "Vertification of long-lived molecular hydrogen anions (Hn-, Dn-, n=2,3) by seconadary-ion mass spectrometry," Phys. Rev. A, vol. 73, pp. 021202(R), 2006. https://doi.org/10.1103/physreva.73.021202
  3. W. Grochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, "The chemical imagination at work in very tigh places," Angew. Chemie, vol. 46, no. 20, pp. 3620-3642, 2007. https://doi.org/10.1002/anie.200602485
  4. P. Clark Souers, "Hydrogen properties for fusion energy," University of California Press, pp. 241-269, 1986.
  5. M. Motta, et al., "Ground-state properties of the hydrogen chain: dimerization, insulator-to-metal transition, and magnetic phases," Phys. Rev. X, vol. 10, pp. 031058, 2020. https://doi.org/10.1103/physrevx.10.031058
  6. I. Langmuir, "The dissociation of hydrogen into atoms," J. Am. Chem. Soc., vol. 34, no. 7, pp. 860-877, 1912. https://doi.org/10.1021/ja02208a003
  7. E. Wigner and H. B. Huntington, "On the possibility of a metallic modification of hydrogen," J. Chem. Phys., vol. 3, pp. 764-770, 1935. https://doi.org/10.1063/1.1749590
  8. S. K. Sharma, H-k. Mao, and P. M. Bell, "Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature," Phys. Rev. Lett., vol. 44, pp. 886, 1980. https://doi.org/10.1103/PhysRevLett.44.886
  9. E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-k. Mao, "Everything you always wanted to know about metallic hydrogen but were afraid to ask," Matter Radiat. Extremes, vol. 5, pp. 038101, 2020. https://doi.org/10.1063/5.0002104
  10. K. Inoue, H. Kanzaki, and S. Suga, "Fundamental absoption spectra of solid hydrogen," Solid St. Commun., vol. 30, pp. 627, 1979. https://doi.org/10.1016/0038-1098(79)90110-8
  11. B. Li, et al., "Probing the electronic band gap of solid hydrogen by inelastic X-ray scattering up to 90 GPa," Phys. Rev. Lett., vol. 126 pp. 036402, 2021. https://doi.org/10.1103/PhysRevLett.126.036402
  12. R. Jeanloz, "Physical Chemistry at ultrahigh pressures and temperatures," Annu. Rev. Phys. Chem., vol. 40, pp. 237-259, 1989. https://doi.org/10.1146/annurev.pc.40.100189.001321
  13. R. P. Dias and I. F. Silvera, "Observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 355, pp. 715-718, 2017. https://doi.org/10.1126/science.aal1579
  14. X.-D. Liu, et al., "Comment on observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 357, pp. eaan2286, 2017. https://doi.org/10.1126/science.aan2286
  15. A. F. Goncharov and V. V. Struzhkin, "Comment on observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 357, pp. eaam9736, 2017. https://doi.org/10.1126/science.aam9736
  16. P. Loubeyre, et al., "Comment on: observation of the Wigner-Huntington transition to metallic hydrogen," arXiv:1702.07192, 2017.
  17. M. I. Eremets and A. P. Drozdov, "Comment on: observation of the Wigner-Huntington transition to metallic hydrogen," arXiv:1702.05125, 2017.
  18. C. F. Richardson and N. W. Ashcroft, "High temperature superconductivity in metallic hydrogen:electron-electron enhancement," Phys. Rev. Lett., vol. 78, pp. 118-121, 1997. https://doi.org/10.1103/PhysRevLett.78.118
  19. J. M. McMahon and D. M. Ceperley, "High-temperature superconductivity in atomic metallic hydrogen," Phys. Rev. B, vol. 84, pp. 144515, 2011. https://doi.org/10.1103/physrevb.84.144515
  20. C. J. Pickard and R. J. Needs, "Structure of phase III of solid hydrogen," Nat. Phys., vol. 3, pp. 473-476, 2007. https://doi.org/10.1038/nphys625
  21. S. Lebegue, et al., "Semimetallic dense hydrogen above 260 GPa," PNAS June 19, vol. 109(25), pp. 9766-9769, 2012. https://doi.org/10.1073/pnas.1207065109
  22. N. W. Ashcroft, "Hydrogen dominant metallic alloys: High temperature superconductors?," Phys. Rev. Lett., vol. 92, pp. 187002, 2004. https://doi.org/10.1103/PhysRevLett.92.187002
  23. C. B. Satterthwaite and I. L. Toepke, "Superconductivity of hydrides and deuterides of thorium," Phys. Rev. Lett., vol. 25, pp. 741, 1970. https://doi.org/10.1103/PhysRevLett.25.741
  24. T. Skoskiewicz, "Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems," Phys. Status Solidi (a), vol. 11, pp. K123, 1972. https://doi.org/10.1002/pssa.2210110253
  25. J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, Nature, vol. 380, pp. 231-234, 1996. https://doi.org/10.1038/380231a0
  26. X. Chen, et al., "Pressure-induced metallization of silane," PNAS, vol. 105, pp. 20-23, 2008. https://doi.org/10.1073/pnas.0710473105
  27. M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, "Superconductivity in hydrogen dominant materials: Silane," Science, vol. 14, pp. 1506-1509, 2008.
  28. M. Hanfland, J. E. Proctor, C. L. Guillaume, O. Degtyareva, and E. Gregoryanz, "High-pressure synthesis, amorphization, and decomposition of silane," Phys. Rev. Lett., vol. 106, pp. 095503, 2011. https://doi.org/10.1103/PhysRevLett.106.095503
  29. C. J. Pickard and R. J. Needs, "High-pressure phases of silane," Phys. Rev. Lett., vol. 97, pp. 045504, 2006. https://doi.org/10.1103/PhysRevLett.97.045504
  30. D. Y. Kim, R. H. Scheicher, C. J. Pickard, R. J. Needs, and R. Ahuja, "Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen," Phys. Rev. Lett., vol. 107, pp. 117002, 2011. https://doi.org/10.1103/physrevlett.107.117002
  31. T. Matsuoka, M. Hishida, K. Kuno, N. Hirao, Y. Ohishi, S. Sakaki, K. Takahama, and K. Shimizu, Phys. Rev. B, vol. 99, pp. 144511, 2019. https://doi.org/10.1103/physrevb.99.144511
  32. S. Minomura, "Pressure-induced transitions in amorphous silicon and germanium," Journal de physique, colloque C4, supplement au 10, Tome 42, C4-181, 1981.
  33. B. Li, Y. Ding, D. Y. Kim, R. Ahuja, G. Zou, and H.-k. Mao, "Rhodium dihydride (RhH2) with high volumetric hydrogen density," PNAS, vol. 108, pp. 18618-18621, 2011. https://doi.org/10.1073/pnas.1114680108
  34. D. Y. Kim, R. H. Scheicher, H.-k. Mao, T. W. Kang, and R. Ahuja, "General trend for pressurized superconducting hydrogen-dense materials," PNAS, vol. 107, pp. 2793-2796, 2010. https://doi.org/10.1073/pnas.0914462107
  35. M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, "Pressure-induced bonding and compound formation in xenon-hydrogen solids," Nature Chemistry, vol. 2, pp. 50-53, 2010. https://doi.org/10.1038/nchem.445
  36. T. A. Strobel, M. Somayazulu, and R. J. Hemley, "Novel pressure-induced interactions in silane-hydrogen," Phys. Rev. Lett., vol. 103, pp. 065701, 2009. https://doi.org/10.1103/PhysRevLett.103.065701
  37. V. V. Struzhkin, et al., "Synthesis of sodium polyhydrides at high pressures," Nature commun., vol. 7, pp. 12267, 2016. https://doi.org/10.1038/ncomms12267
  38. J. Binns, et al., "Complex hydrogen substructure in semimetallic RuH4," J. Phys. Chem. Lett., vol. 11, no. 9, pp. 3390-3395, 2020. https://doi.org/10.1021/acs.jpclett.0c00688
  39. T. Muramatsu, et al., "Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9," J. Phys. Chem. C, vol. 119, no. 32, pp. 18007-18013, 2015. https://doi.org/10.1021/acs.jpcc.5b03709
  40. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system," Nature, vol. 525, pp. 73-76, 2015. https://doi.org/10.1038/nature14964
  41. A. P. Drozdov, et al., "Superconductivity at 250 K in lanthanum hydride under high pressures," Nature, vol. 569, pp. 528-531, 2019. https://doi.org/10.1038/s41586-019-1201-8
  42. M. Somayazulu, et al., "Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures," Phys. Rev. Lett., vol. 122, pp. 027001, 2019. https://doi.org/10.1103/PhysRevLett.122.027001
  43. Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, "The metallization and superconductivity of dense hydrogen sulfide," J. Chem. Phys., vol. 140, pp. 174712, 2014. https://doi.org/10.1063/1.4874158
  44. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, "Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure," PNAS, vol. 114 (27), pp. 6990-6995, 2017. https://doi.org/10.1073/pnas.1704505114
  45. E. Snider, et al., "Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature, vol. 586, pp. 373-377, 2020. https://doi.org/10.1038/s41586-020-2801-z
  46. J. E. Hirsch and F. Marsiglio, "Unusual width of the superconducting transition in a hydride," Nature, vol. 596, pp. E9-E10, 2021. https://doi.org/10.1038/s41586-021-03595-z
  47. M. Dogan and M. L. Cohen, "Anomalous behavior in high-pressure carbonaceous sulfur hydride," Physica C: Superconductivity and its applications, vol. 583, pp. 1353851, 2021. https://doi.org/10.1016/j.physc.2021.1353851
  48. V. Struzhkin, B. Li, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, "Superconductivity in La and Y hydrides: Remaining questions to experiment and theory," Matter Radiat. Extremes, vol. 5, pp. 028201, 2020. https://doi.org/10.1063/1.5128736
  49. Y. Xia, B. Yang, F. Jin, Y. Ma, X. Liu, and M. Zhao, "Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure," nano lett., vol. 19, pp. 2537-2542, 2019. https://doi.org/10.1021/acs.nanolett.9b00258