Acknowledgement
This work was supported by NSFC of China (Grant 11774015)
References
- R. Golser, et al., "Experimental and theoretical evidence for long-lived molecular hydrogen anions H2- and D2-," Phys. Rev. Lett., vol. 94, pp. 223003, 2005. https://doi.org/10.1103/PhysRevLett.94.223003
- Hubert Gnaser and R. Golser, "Vertification of long-lived molecular hydrogen anions (Hn-, Dn-, n=2,3) by seconadary-ion mass spectrometry," Phys. Rev. A, vol. 73, pp. 021202(R), 2006. https://doi.org/10.1103/physreva.73.021202
- W. Grochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, "The chemical imagination at work in very tigh places," Angew. Chemie, vol. 46, no. 20, pp. 3620-3642, 2007. https://doi.org/10.1002/anie.200602485
- P. Clark Souers, "Hydrogen properties for fusion energy," University of California Press, pp. 241-269, 1986.
- M. Motta, et al., "Ground-state properties of the hydrogen chain: dimerization, insulator-to-metal transition, and magnetic phases," Phys. Rev. X, vol. 10, pp. 031058, 2020. https://doi.org/10.1103/physrevx.10.031058
- I. Langmuir, "The dissociation of hydrogen into atoms," J. Am. Chem. Soc., vol. 34, no. 7, pp. 860-877, 1912. https://doi.org/10.1021/ja02208a003
- E. Wigner and H. B. Huntington, "On the possibility of a metallic modification of hydrogen," J. Chem. Phys., vol. 3, pp. 764-770, 1935. https://doi.org/10.1063/1.1749590
- S. K. Sharma, H-k. Mao, and P. M. Bell, "Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature," Phys. Rev. Lett., vol. 44, pp. 886, 1980. https://doi.org/10.1103/PhysRevLett.44.886
- E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-k. Mao, "Everything you always wanted to know about metallic hydrogen but were afraid to ask," Matter Radiat. Extremes, vol. 5, pp. 038101, 2020. https://doi.org/10.1063/5.0002104
- K. Inoue, H. Kanzaki, and S. Suga, "Fundamental absoption spectra of solid hydrogen," Solid St. Commun., vol. 30, pp. 627, 1979. https://doi.org/10.1016/0038-1098(79)90110-8
- B. Li, et al., "Probing the electronic band gap of solid hydrogen by inelastic X-ray scattering up to 90 GPa," Phys. Rev. Lett., vol. 126 pp. 036402, 2021. https://doi.org/10.1103/PhysRevLett.126.036402
- R. Jeanloz, "Physical Chemistry at ultrahigh pressures and temperatures," Annu. Rev. Phys. Chem., vol. 40, pp. 237-259, 1989. https://doi.org/10.1146/annurev.pc.40.100189.001321
- R. P. Dias and I. F. Silvera, "Observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 355, pp. 715-718, 2017. https://doi.org/10.1126/science.aal1579
- X.-D. Liu, et al., "Comment on observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 357, pp. eaan2286, 2017. https://doi.org/10.1126/science.aan2286
- A. F. Goncharov and V. V. Struzhkin, "Comment on observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 357, pp. eaam9736, 2017. https://doi.org/10.1126/science.aam9736
- P. Loubeyre, et al., "Comment on: observation of the Wigner-Huntington transition to metallic hydrogen," arXiv:1702.07192, 2017.
- M. I. Eremets and A. P. Drozdov, "Comment on: observation of the Wigner-Huntington transition to metallic hydrogen," arXiv:1702.05125, 2017.
- C. F. Richardson and N. W. Ashcroft, "High temperature superconductivity in metallic hydrogen:electron-electron enhancement," Phys. Rev. Lett., vol. 78, pp. 118-121, 1997. https://doi.org/10.1103/PhysRevLett.78.118
- J. M. McMahon and D. M. Ceperley, "High-temperature superconductivity in atomic metallic hydrogen," Phys. Rev. B, vol. 84, pp. 144515, 2011. https://doi.org/10.1103/physrevb.84.144515
- C. J. Pickard and R. J. Needs, "Structure of phase III of solid hydrogen," Nat. Phys., vol. 3, pp. 473-476, 2007. https://doi.org/10.1038/nphys625
- S. Lebegue, et al., "Semimetallic dense hydrogen above 260 GPa," PNAS June 19, vol. 109(25), pp. 9766-9769, 2012. https://doi.org/10.1073/pnas.1207065109
- N. W. Ashcroft, "Hydrogen dominant metallic alloys: High temperature superconductors?," Phys. Rev. Lett., vol. 92, pp. 187002, 2004. https://doi.org/10.1103/PhysRevLett.92.187002
- C. B. Satterthwaite and I. L. Toepke, "Superconductivity of hydrides and deuterides of thorium," Phys. Rev. Lett., vol. 25, pp. 741, 1970. https://doi.org/10.1103/PhysRevLett.25.741
- T. Skoskiewicz, "Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems," Phys. Status Solidi (a), vol. 11, pp. K123, 1972. https://doi.org/10.1002/pssa.2210110253
- J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, Nature, vol. 380, pp. 231-234, 1996. https://doi.org/10.1038/380231a0
- X. Chen, et al., "Pressure-induced metallization of silane," PNAS, vol. 105, pp. 20-23, 2008. https://doi.org/10.1073/pnas.0710473105
- M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, "Superconductivity in hydrogen dominant materials: Silane," Science, vol. 14, pp. 1506-1509, 2008.
- M. Hanfland, J. E. Proctor, C. L. Guillaume, O. Degtyareva, and E. Gregoryanz, "High-pressure synthesis, amorphization, and decomposition of silane," Phys. Rev. Lett., vol. 106, pp. 095503, 2011. https://doi.org/10.1103/PhysRevLett.106.095503
- C. J. Pickard and R. J. Needs, "High-pressure phases of silane," Phys. Rev. Lett., vol. 97, pp. 045504, 2006. https://doi.org/10.1103/PhysRevLett.97.045504
- D. Y. Kim, R. H. Scheicher, C. J. Pickard, R. J. Needs, and R. Ahuja, "Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen," Phys. Rev. Lett., vol. 107, pp. 117002, 2011. https://doi.org/10.1103/physrevlett.107.117002
- T. Matsuoka, M. Hishida, K. Kuno, N. Hirao, Y. Ohishi, S. Sakaki, K. Takahama, and K. Shimizu, Phys. Rev. B, vol. 99, pp. 144511, 2019. https://doi.org/10.1103/physrevb.99.144511
- S. Minomura, "Pressure-induced transitions in amorphous silicon and germanium," Journal de physique, colloque C4, supplement au 10, Tome 42, C4-181, 1981.
- B. Li, Y. Ding, D. Y. Kim, R. Ahuja, G. Zou, and H.-k. Mao, "Rhodium dihydride (RhH2) with high volumetric hydrogen density," PNAS, vol. 108, pp. 18618-18621, 2011. https://doi.org/10.1073/pnas.1114680108
- D. Y. Kim, R. H. Scheicher, H.-k. Mao, T. W. Kang, and R. Ahuja, "General trend for pressurized superconducting hydrogen-dense materials," PNAS, vol. 107, pp. 2793-2796, 2010. https://doi.org/10.1073/pnas.0914462107
- M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, "Pressure-induced bonding and compound formation in xenon-hydrogen solids," Nature Chemistry, vol. 2, pp. 50-53, 2010. https://doi.org/10.1038/nchem.445
- T. A. Strobel, M. Somayazulu, and R. J. Hemley, "Novel pressure-induced interactions in silane-hydrogen," Phys. Rev. Lett., vol. 103, pp. 065701, 2009. https://doi.org/10.1103/PhysRevLett.103.065701
- V. V. Struzhkin, et al., "Synthesis of sodium polyhydrides at high pressures," Nature commun., vol. 7, pp. 12267, 2016. https://doi.org/10.1038/ncomms12267
- J. Binns, et al., "Complex hydrogen substructure in semimetallic RuH4," J. Phys. Chem. Lett., vol. 11, no. 9, pp. 3390-3395, 2020. https://doi.org/10.1021/acs.jpclett.0c00688
- T. Muramatsu, et al., "Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9," J. Phys. Chem. C, vol. 119, no. 32, pp. 18007-18013, 2015. https://doi.org/10.1021/acs.jpcc.5b03709
- A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system," Nature, vol. 525, pp. 73-76, 2015. https://doi.org/10.1038/nature14964
- A. P. Drozdov, et al., "Superconductivity at 250 K in lanthanum hydride under high pressures," Nature, vol. 569, pp. 528-531, 2019. https://doi.org/10.1038/s41586-019-1201-8
- M. Somayazulu, et al., "Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures," Phys. Rev. Lett., vol. 122, pp. 027001, 2019. https://doi.org/10.1103/PhysRevLett.122.027001
- Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, "The metallization and superconductivity of dense hydrogen sulfide," J. Chem. Phys., vol. 140, pp. 174712, 2014. https://doi.org/10.1063/1.4874158
- H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, "Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure," PNAS, vol. 114 (27), pp. 6990-6995, 2017. https://doi.org/10.1073/pnas.1704505114
- E. Snider, et al., "Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature, vol. 586, pp. 373-377, 2020. https://doi.org/10.1038/s41586-020-2801-z
- J. E. Hirsch and F. Marsiglio, "Unusual width of the superconducting transition in a hydride," Nature, vol. 596, pp. E9-E10, 2021. https://doi.org/10.1038/s41586-021-03595-z
- M. Dogan and M. L. Cohen, "Anomalous behavior in high-pressure carbonaceous sulfur hydride," Physica C: Superconductivity and its applications, vol. 583, pp. 1353851, 2021. https://doi.org/10.1016/j.physc.2021.1353851
- V. Struzhkin, B. Li, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, "Superconductivity in La and Y hydrides: Remaining questions to experiment and theory," Matter Radiat. Extremes, vol. 5, pp. 028201, 2020. https://doi.org/10.1063/1.5128736
- Y. Xia, B. Yang, F. Jin, Y. Ma, X. Liu, and M. Zhao, "Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure," nano lett., vol. 19, pp. 2537-2542, 2019. https://doi.org/10.1021/acs.nanolett.9b00258