Acknowledgement
This work was supported by the National Natural Science Foundation of China (No.12071354).
References
- H. Ahn and J.-D. Park, The explicit forms and zeros of the Bergman kernel function for Hartogs type domains, J. Funct. Anal. 262 (2012), no. 8, 3518-3547. https://doi.org/10.1016/j.jfa.2012.01.021
- E. Bi, Z. Feng, and Z. Tu, Balanced metrics on the Fock-Bargmann-Hartogs domains, Ann. Global Anal. Geom. 49 (2016), no. 4, 349-359. https://doi.org/10.1007/s10455-016-9495-3
- E. Bi and Z. Tu, Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains, Pacific J. Math. 297 (2018), no. 2, 277-297. https://doi.org/10.2140/pjm.2018.297.277
- P. Charpentier, Y. Dupain, and M. Mounkaila, Estimates for weighted Bergman projections on pseudo-convex domains of finite type in ℂn, Complex Var. Elliptic Equ. 59 (2014), no. 8, 1070-1095. https://doi.org/10.1080/17476933.2013.805411
- J. P. D'Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), no. 1, 23-34. https://doi.org/10.1007/BF02921591
- F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974/75), 593-602. https://doi.org/10.1512/iumj.1974.24.24044
- S. G. Gindikin, Analysis in homogeneous domains, Russ. Math. Surv. 19(1964), 1-89. https://doi.org/10.1070/RM1964v019n04ABEH001153
- H. Ishi, J.-D. Park, and A. Yamamori, Bergman kernel function for Hartogs domains over bounded homogeneous domains, J. Geom. Anal. 27 (2017), no. 2, 1703-1736. https://doi.org/10.1007/s12220-016-9737-4
- H. T. Kaptanoglu, Bergman projections on Besov spaces on balls, Illinois J. Math. 49 (2005), no. 2, 385-403. http://projecteuclid.org/euclid.ijm/1258138024 https://doi.org/10.1215/ijm/1258138024
- E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), no. 3, 257-272. https://doi.org/10.4064/sm-94-3-257-272
- S. H. Liu and M. Stoll, Projections on spaces of holomorphic functions on certain domains in ℂ2, Complex Variables Theory Appl. 17 (1992), no. 3-4, 223-233. https://doi.org/10.1080/17476939208814515
- N. Nikolov and W. Zwonek, The Bergman kernel of the symmetrized polydisc in higher dimensions has zeros, Arch. Math. (Basel) 87 (2006), no. 5, 412-416. https://doi.org/10.1007/s00013-006-1801-z
- K. Oeljeklaus, P. Pflug, and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 3, 915-928. https://doi.org/10.5802/aif.1585
- J.-D. Park, New formulas of the Bergman kernels for complex ellipsoids in ℂ2, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4211-4221. https://doi.org/10.1090/S0002-9939-08-09576-2
- J.-D. Park, Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids, J. Math. Anal. Appl. 400 (2013), no. 2, 664-674. https://doi.org/10.1016/j.jmaa.2012.11.017
- Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), no. 1, 110-134. https://doi.org/10.1016/0022-1236(90)90030-O
- J. Shi, Bergman type operators on a class of weakly pseudoconvex domains, Sci. China Ser. A 41 (1998), no. 1, 22-32. https://doi.org/10.1007/BF02900768
- A. Yamamori, The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function, Complex Var. Elliptic Equ. 58 (2013), no. 6, 783-793. https://doi.org/10.1080/17476933.2011.620098
- W. Yin, The Bergman kernel on four tyoes of suoer-Cartan domains, Chinese Sci. Bull. 44 (1999), 1391-1395. https://doi.org/10.1360/csb1999-44-13-1391
- W. Yin, The Bergman kernels on super-Cartan domains of the first type, Sci. China Ser. A 43 (2000), no. 1, 13-21. https://doi.org/10.1007/BF02903843
- W. Yin, K. Lu, and G. Roos, New classes of domains with explicit Bergman kernel, Sci. China Ser. A 47 (2004), no. 3, 352-371. https://doi.org/10.1360/03ys0090
- E. H. Youssfi, Proper holomorphic liftings and new formulas for the Bergman and Szego kernels, Studia Math. 152 (2002), no. 2, 161-186. https://doi.org/10.4064/sm152-2-5
- R. Zhao, Generalization of Schur's test and its application to a class of integral operators on the unit ball of ℂn, Integral Equations Operator Theory 82 (2015), no. 4, 519-532. https://doi.org/10.1007/s00020-014-2215-0
- K. Zhu, The Bergman spaces, the Bloch space, and Gleason's problem, Trans. Amer. Math. Soc. 309 (1988), no. 1, 253-268. https://doi.org/10.2307/2001168
- K. Zhu, A Forelli-Rudin type theorem with applications, Complex Variables Theory Appl. 16 (1991), no. 2-3, 107-113. https://doi.org/10.1080/17476939108814472
- K. Zhu, Operator theory in function spaces, second edition, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/138