DOI QR코드

DOI QR Code

자성 액추에이터 기반의 소프트 로봇

Soft Robots Based on Magnetic Actuator

  • 노규령 (울산과학기술원 신소재공학과) ;
  • 최문기 (울산과학기술원 신소재공학과)
  • Nor, Gyu-Lyeong (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Choi, Moon Kee (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2021.10.04
  • 심사 : 2021.10.15
  • 발행 : 2021.11.01

초록

Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

키워드

참고문헌

  1. D. Rus and M. T. Tolley, Nature, 521, 467 (2015). [DOI: https://doi.org/10.1038/nature14543]
  2. C. Majidi, Soft Rob., 1, 5 (2014). [DOI: https://doi.org/10.1089/soro.2013.0001]
  3. H. Zeng, P. Wasylczyk, D. S. Wiersma, and A. Priimagi, Adv. Mater., 30, 1703554 (2018). [DOI: https://doi.org/10.1002/adma.201703554]
  4. S. Petsch, R. Rix, B. Khatri, S. Schuhladen, P. Muller, R. Zentel, and H. Zappe, Sens. Actuators, A, 231, 44 (2015). [DOI: https://doi.org/10.1016/j.sna.2014.10.014]
  5. C. Laschi, B. Mazzolai, and M. Cianchetti, Sci. Rob., 1, eaah3690 (2016). [DOI: https://doi.org/10.1126/scirobotics.aah3690]
  6. H. Ceylan, J. Giltinan, K. Kozielski, and M. Sitti, Lab Chip, 17, 1705 (2017). [DOI: https://doi.org/10.1039/C7LC00064B]
  7. D. Cappelleri, D. Efthymiou, A. Goswami, N. Vitoroulis, and M. Zavlanos, Int. J. Adv. Rob. Syst., 11, 150 (2014). [DOI: https://doi.org/10.5772/58985]
  8. J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, Adv. Mater., 28, 231 (2016). [DOI: https://doi.org/10.1002/adma.201504264]
  9. J. Paek, I. Cho, and J. Kim, Sci. Rep., 5, 10768 (2015). [DOI: https://doi.org/10.1038/srep10768]
  10. H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, Adv. Mater., 27, 3883 (2015). [DOI: https://doi.org/10.1002/adma.201501446]
  11. T. H. Ware, M. E. Mcconney, J. J. Wie, V. P. Tondiglia, and T. J. White, Science, 347, 982 (2015). [DOI: https://doi.org/10.1126/science.1261019]
  12. L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, Adv. Mater., 29, 1603483 (2017). [DOI: https://doi.org/10.1002/adma.201603483]
  13. G. H. Kwon, J. Y. Park, J. Y. Kim, M. L. Frisk, D. J. Beebe, and S. H. Lee, Small, 4, 2148 (2008). [DOI: https://doi.org/10.1002/smll.200800315]
  14. K. Jung, J. C. Koo, J. D. Nam, Y. K. Lee, and H. R. Choi, Bioinspiration Biomimetics, 2, S42 (2007). [DOI: https://doi.org/10.1088/1748-3182/2/2/S05]
  15. J. W. Sohn and S. B. Choi, Int. J. Mech. Syst. Eng., 3, 122 (2017). [DOI: https://doi.org/10.15344/2455-7412/2017/122]
  16. M. Wang, B. P. Lin, and H. Yang, Nat. Commun., 7, 13981 (2016). [DOI: https://doi.org/10.1038/ncomms13981]
  17. X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.X.J. Wang, K. Kostarelos, and L. Zhang, Sci. Rob., 2, eaaq1155 (2017). [DOI: https://doi.org/10.1126/scirobotics.aaq1155]
  18. C. Peters, M. Hoop, S. Pane, B. J. Nelson, and C. Hierold, Adv. Mater., 28, 533 (2016). [DOI: https://doi.org/10.1002/adma.201503112]
  19. H. D. Young, R. A. Freedman, T. R. Sandin, and A. L. Ford, University Physics (Addison-Wesley Reading, MA, 1996), p. 731.
  20. S. Jeon, A. K. Hoshiar, K. Kim, S. Lee, E. Kim, S. Lee, J. Y. Kim, B. J. Nelson, H. J. Cha, B. J. Yi, and H. Choi, Soft Rob., 6, 54 (2019). [DOI: https://doi.org/10.1089/soro.2018.0019]
  21. T. G. Kang, M. A. Hulsen, P. D. Anderson, J.M.J. den Toonder, and H.E.H. Meijer, Phys. Rev. E, 76, 066303 (2007). [DOI: https://doi.org/10.1103/PhysRevE.76.066303]
  22. M. Roper, R. Dreyfus, J. Baudry, M. Fermigier, J. Bibette, and H. A. Stone, Proc. R. Soc. A, 464, 877 (2008). [DOI: https://doi.org/10.1098/rspa.2007.0285]
  23. I. Peousis, E. Homburg, R. Derks, and A. Dietzel, Lab Chip, 7, 1746 (2007). [DOI: https://doi.org/10.1039/B713735B]
  24. R. M. Erb, J. J. Martin, R. Soheilian, C. Pan, and J. R. Barber, Adv. Funct. Mater., 26, 3859 (2016). [DOI: https://doi.org/10.1002/adfm.201504699]
  25. S. L. Biswal and A. P. Gast, Phys. Rev., 68, 021402 (2003). [DOI: https://doi.org/10.1103/PhysRevE.68.021402]
  26. Y. Hu, L. He, and Y. Yin, Angew. Chem. Int. Ed., 50, 3747 (2011). [DOI: https://doi.org/10.1002/anie.201100290]
  27. F. Martinez-Pedrero and P. Tierno, Phys. Rev. Appl., 3, 051003 (2015). [DOI: https://doi.org/10.1103/PhysRevApplied.3.051003]
  28. K. Capek, RUR (Rossum's Universal Robots) (Penguin, New York, 2004) p. 3.
  29. Y. H. Cho, Industrial Robot (Korea Institute of Science and Technology Information, 2002) p. 15.
  30. Y. Kim, G. A. Parada, S. Liu, and X. Zhao, Sci. Rob., 4, eaax7329 (2019). [DOI: https://doi.org/10.1126/scirobotics.aax7329]
  31. S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, and D. Rus, Proc. 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Seattle, USA, 2015) p. 1490. [DOI: https://doi.org/10.1109/ICRA.2015.7139386]
  32. E. Diller, J. Zhuang, G. Z. Lum, M. R. Edwards, and M. Sitti, Appl. Phys. Lett., 104, 174101 (2014). [DOI: https://doi.org/10.1063/1.4874306]
  33. W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, Nature, 554, 81 (2018). [DOI: https://doi.org/10.1038/nature25443]
  34. Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, Nature, 558, 274 (2018). [DOI: https://doi.org/10.1038/s41586-018-0185-0]
  35. T. Xu, J. Zhang, M. Salehizadeh, O. Onaizah, and E. Diller, Sci. Rob., 4, eeav4494 (2019). [DOI: https://doi.org/10.1126/scirobotics.aav4494]
  36. Y. Alapan, A. C. Karacakol, S. N. Guzelhan, I. Isik, and M. Sitti, Sci. Rob., 6, eabc6414 (2020). [DOI: https://doi.org/10.1126/sciadv.abc6414]
  37. E. Diller and M. Sitti, Adv. Funct. Mater., 24, 4397 (2014). [DOI: https://doi.org/10.1002/adfm.201400275]
  38. H. Song, H. Lee, J. Lee, J. K. Choe, S. Lee, J. Y. Yi, S. Park, J. W. Yoo, M. S. Kwon, and J. Kim, Nano Lett., 20, 5185 (2020). [DOI: https://doi.org/10.1021/acs.nanolett.0c01418]
  39. I. Petousis, E. Homburg, R. Derks, and A. Dietzel, Lab Chip, 7, 1746 (2007). [DOI: https://doi.org/10.1039/B713735B]
  40. T. G. Kang, M. A. Hulsen, P. D. Anderson, J.M.J. den Toonder, and H.E.H. Meijer, Phys. Rev. E, 76, 066303 (2007). [DOI: https://doi.org/10.1103/PhysRevE.76.066303]
  41. T. Sawetzki, S. Rahmouni, C. Bechinger, and D.W.M. Marr, Proc. Natl. Acad. Sci. U. S. A., 105, 20141 (2008). [DOI: https://doi.org/10.1073/pnas.0808808105]
  42. S. L. Biswal and A. P. Gast, Phys. Rev. E, 69, 041406 (2004). [DOI: https://doi.org/10.1103/PhysRevE.69.041406]
  43. W. H. Chong, L. K. Chin, R.L.S. Tan, H. Wang, A. Q. Liu, and H. Chen, Angew. Chem. Int. Ed., 52, 8570 (2013). [DOI: https://doi.org/10.1002/anie.201303249]
  44. R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Nature, 437, 862 (2005). [DOI: https://doi.org/10.1038/nature04090]
  45. C. Pauer, O. du Roure, J. Heuvingh, T. Liedl, and J. Tavacoli, Adv. Mater., 33, 2006237 (2021). [DOI: https://doi.org/10.1002/adma.202006237]
  46. J. Kim, S. E. Chung, S. E. Choi, H. Lee, J. Kim, and S. Kwon, Nat. Mater., 10, 747 (2011). [DOI: https://doi.org/10.1038/nmat3090]
  47. S. Qi, H. Guo, J. Fu, Y. Xie, M. Zhu, and M. Yu, Compos. Sci. Technol., 188, 107973 (2020). [DOI: https://doi.org/10.1016/j.compscitech.2019.107973]
  48. H. W. Huang, M. S. Sakar, A. J. Petruska, S. Pane, and B. J. Nelson, Nat. Commun., 7, 12263 (2016). [DOI: https://doi.org/10.1038/ncomms12263]
  49. F. Martinez-Pedrero and P. Tierno, Phys. Rev. Appl., 3, 051003 (2015). [DOI: https://doi.org/10.1103/PhysRevApplied.3.051003]