DOI QR코드

DOI QR Code

Study on Shingled String Interconnection for High Power Solar Module

고출력 슁글드 태양광 모듈 제작을 위한 스트링 연결에 관한 연구

  • Kim, Juhwi (Department of Electrical Engineering, Sungyunkwan University) ;
  • Kim, Junghoon (Research Institute, Topsun Co) ;
  • Jeong, Chaehwan (Smart Energy & Nano R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Wonyoung (R&D Center, Genesem Inc) ;
  • Lee, Jaehyeong (Department of Electrical Engineering, Sungyunkwan University)
  • 김주휘 (성균관대학교 전자전기컴퓨터공학과) ;
  • 김정훈 ((주)탑선 기술연구소) ;
  • 정채환 (한국생산기술연구원 스마트에너지나노융합연구그룹) ;
  • 최원용 ((주)제너셈 R&D 센터) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2021.07.28
  • Accepted : 2021.08.14
  • Published : 2021.11.01

Abstract

Interest and investment in renewable energy have increased worldwide, highlighting the need for renewable energy. Solar energy was the most promising energy of all renewable energy sources, and it has the highest investment value. Because photovoltaics require a certain amount of area for installation, high density and high output performance are required. Shingled module is a promising technology in that they are featured by higher density and higher output compared to the conventional modules. Shingled technology uses a laser scribing to divide solar cells that are to be bonded with electrically conductive adhesive (ECA) to produce and connect strings, which has a higher output in the same area than the conventional modules. In the process of producing solar modules, metal ribbons are used to interconnect cells, but they are also needed for string connections in shingled solar cells. Accordingly, in this study, we researched the interconnection that best suits the connector that joins the string to the string. The module outputs produced under the conditions of the string interconnection were compared and analyzed.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No.20213030010290).

References

  1. Y. H. Kim, D. H. Yoo, H. Han, and J. S. Bae, J. Clim. Change Res., 10, 317 (2019). [DOI: https://doi.org/10.15531/ksccr.2019.10.4.317]
  2. J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, and V. Bulovic, Energy Environ. Sci., 8, 1200 (2015). [DOI: https://doi.org/10.1039/C4EE04073B]
  3. S. Pareek and R. Dahiya, Energy, 95, 561 (2016). [DOI: https://doi.org/10.1016/j.energy.2015.12.036]
  4. T. H. Jung, H. E. Song, H. K. Ahn, and G. H. Kang, Sol. Energy, 103, 253 (2014). [DOI: https://doi.org/10.1016/j.solener.2014.01.032]
  5. W. Oh, J. Park, S. Dimitrijev, E. K. Kim, Y. S. Park, and J. Lee, Sol. Energy, 195, 527 (2020). [DOI: https://doi.org/10.1016/j.solener.2019.11.095]
  6. H. Jee, S. Lee, C. Jeong, and J. Lee, J. Nanosci. Nanotechnol., 19, 1360 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16200]
  7. N. Klasen, A. Mondon, A. Kraft, and U. Eitner, "Shingled Cell Interconnection: A New Generation of Bifacial PV-Modules," in 7th Workshop on Metallization & Interconnection for Crystalline Silicon Solar Cells (Konstanz, Germany, 2017). [DOI: http://dx.doi.org/10.2139/ssrn.3152478]
  8. A. M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. Bordonaro, J. Woods, and L. Felton, 21st European Photovoltaic Solar Energy Conference (WIP, Dresden, USA, 2006). [https://www.steelandsilicon.com/pubs/Gabor_20060914.pdf]
  9. M. T. Zarmai, N. N. Ekere, C. F. Oduoza, and E. H. Amalu, Appl. Energy, 154, 173 (2015). [DOI: https://doi.org/10.1016/j.apenergy.2015.04.120]
  10. W. J. Oh, J. S. Park, M. Kwon, J. Lee, E. K. Kim, Y. Park, and C. Jeong, J. Nanosci. Nanotechnol., 20, 6992 (2020). [DOI: https://doi.org/10.1166/jnn.2020.18836]
  11. S. Roberts, K. C. Heasman, and T. M. Braton. Sixteenth European Photovoltaic Solar Energy Conference (Routledge, 2020) p. 0. [https://www.taylorfrancis.com/chapters/edit/10.4324/9781315074 405-82/reduction-module-power-losses-optimisation-tabbing-ribbon-roberts-heasman-braton]
  12. K. M. Kumar, V. Kripesh, and A.A.O. Tay, J. Alloys Compd., 455, 148 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.01.045]
  13. M. Knausz, G. Oreski, M. Schmidt, P. Guttmann, K. Berger, Y. Voronko, G. Eder, T. Koch, and G. Pinter, Polym. Test., 44, 160 (2015). [DOI: https://doi.org/10.1016/j.polymertesting.2015.04.009]
  14. F. Kraemer, J. Seib, E. Peter, and S. Wiese, 2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) (IEEE, Ghent, Belgium, 2014) pp. 2378-2382. [DOI: https://doi.org/10.1109/EuroSimE.2014.6813853]