DOI QR코드

DOI QR Code

비카드뮴계 InZnP/ZnSe/ZnS 코어쉘 양자점의 발광 특성

Luminescence Properties of Cd-Free InZnP/ZnSe/ZnS Core/Shell Quantum Dots

  • 이영기 (위덕대학교 신재생에너지공학과) ;
  • 이민상 ((주)피엘티 기술연구소) ;
  • 이정미 (전북대학교 전자정보재료공학과) ;
  • 원대희 (원광대학교 융합교양대학) ;
  • 김종만 (전남도립대학교 신재생에너지전기과)
  • Lee, Young-Ki (Department of Renewable Energy Engineering, Uiduk University) ;
  • Lee, Min-Sang (Technical Research Center, PLT Co., Ltd) ;
  • Lee, Jeong-Mi (Department of Electronic and Information Material Engineering, Jeonbuk National University) ;
  • Won, Dae-Hee (College of Liberal Arts, Wonkwang University) ;
  • Kim, Jong-Man (Department of Electricity and New & Renewable Energy, Jeonnam State University)
  • 투고 : 2021.08.20
  • 심사 : 2021.09.09
  • 발행 : 2021.11.01

초록

In this work, we synthesized alloy-core InZnP quantum dots, which are more efficient than single-core InP quantum dots, using a solution process method. The effect of synthesis conditions of alloy core on optical properties was investigated. We also investigated the conditions that make up the gradient shell to minimize defects caused by lattice mismatch between the InZnP core and ZnS is 7.7%. The stable synthesis temperature of the InZnP alloy core was 200℃. Quantum dots consisting of three layered ZnSe gradient shell and single layered ZnS exhibited the best optical property. The properties of quantum dots synthesized in 100 ml and in 2,000 ml flasks were almost equal.

키워드

과제정보

이 연구 결과물은 2020학년도 위덕대학교 학술진흥연구비 지원(No.2020-0074)에 의하여 이루어졌음.

참고문헌

  1. L. E. Brus, J. Chem. Phys., 80, 4403 (1984). [DOI: https://doi.org/10.1063/1.447218]
  2. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc., 128, 2385 (2006). [DOI: https://doi.org/10.1021/ja056494n]
  3. B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, Laser Photonics Rev., 8, 73 (2014). [DOI: https://doi.org/10.1002/lpor.201300024]
  4. M. A. Walling, J. A. Novak, and J.R.E. Shepard, Int. J. Mol. Sci., 10, 441 (2009). [DOI: https://doi.org/10.3390/ijms10020441]
  5. A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popovic, B. J. Walker, D. G. Nocera, and M. G. Bawendi, Chem. Sci., 3, 2028 (2012). [DOI: https://doi.org/10.1039/C2SC00561A]
  6. R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O'Brien, and D. J. Binks, Small, 11, 1548 (2015). [DOI: https://doi.org/10.1002/smll.201402264]
  7. M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, Chem. Mater., 27, 4893 (2015). [DOI: https://doi.org/10.1021/acs.chemmater.5b02138]
  8. Y. Altintas, M. Y. Talpur, and E. Mutlugun, Opt. Express, 25, 28371 (2017). [DOI: https://doi.org/10.1364/OE.25.028371]
  9. International Environmental Regulation Analysis Report, 312-19-019, 2 (2019).
  10. U.T.D. Thuy, P. Reiss, and N. Q. Liem, Appl. Phys. Lett., 97, 193104 (2010). [DOI: https://doi.org/10.1063/1.3515417]
  11. F. Pietra, N. Kirkwood, L. De Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, and A. J. Houtepen, Chem. Mater., 29, 5192 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b00848]
  12. F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, ACS Nano, 10, 4754 (2016). [DOI: https://doi.org/10.1021/acsnano.6b01266]
  13. K. D. Wegner, F. Dussert, D. Truffier-Boutry, A. Benayad, D. Beal, L. Mattera, W. L. Ling, M. Carriere, and P. Reiss, Front. Chem., 27, 466 (2019). [DOI: https://doi.org/10.3389/fchem.2019.00466]
  14. R. D. Vengrenovich, Y. V. Gudyma, and S. V. Yarema, Semiconductors, 35, 1378 (2001). [DOI: https://doi.org/10.1134/1.1427975]
  15. N.T.K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev., 114, 7610 (2014). [DOI: https://doi.org/10.1021/cr400544s]