DOI QR코드

DOI QR Code

수경재배 시 적산 일사량과 배지 수분 함량 복합 급액 제어에 의한 '설향' 딸기(Fragaria annanassa Dutch. cvs. 'Sulhyang')의 생육 및 품질

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics

  • 최수현 (국립원예특작과학원 채소과) ;
  • 김소희 (국립원예특작과학원 시설원예연구소) ;
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 정호정 (국립원예특작과학원 시설원예연구소) ;
  • 임미영 (국립원예특작과학원 시설원예연구소) ;
  • 김대영 (국립원예특작과학원 채소과) ;
  • 이선이 (국립원예특작과학원 채소과)
  • Choi, Su Hyun (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Kim, So Hui (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Lee Choi, Gyeong (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Jeong, Ho Jeong (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Lim, Mi Young (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Kim, Dae Young (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Lee, Seon Yi (Vegetable Research Division, National Institute of Horticultural and Herbal Science)
  • 투고 : 2021.10.01
  • 심사 : 2021.10.18
  • 발행 : 2021.10.31

초록

우리나라 딸기 재배는 시설 재배로 이루어지고 있으며, 대부분 농가의 급액 관리는 재배자의 경험을 토대로 타이머 제어 방식으로 이루어지고 있다. 타이머 급액 방법은 재배 환경, 작물의 생육 단계, 배지 수분 함량 등을 고려하기 어려워 작물을 최적 수준으로 관리하지 못하고, 급액 관리의 정확성이 결여되는 문제점이 있다. 적산 일사량과 배지 수분함량을 이용한 급액 방법은 작물의 생육 상태에 따라 정밀하게 양액을 공급하는 친환경적인 방법이다. 본 연구는 코이어배지를 이용한 딸기 수경재배에서 적산일사량과 배지 수분함량을 이용한 복합 급액 제어와 타이머 제어 급액 방법을 비교하고 복합 급액 제어 시 최적의 적산 일사량 기준을 설정하고자 수행하였다. 적산일사량 급액 방법은 외부 일사량을 기준으로 100, 150, 250J·cm-2에 도달하면 자동으로 급액하며 배지 수분함량이 60% 미만이면 강제 급액하고, 1회 급액량은 50mL로 공급하였다. 타이머 제어는 대조구로 설정하였다. 급액을 개시하는 적산 일사량 기준이 작을수록 일일급액량이 많았으며 100J·cm-2 기준 급액 시 급액량은 250J·cm-2 처리구 대비 46% 많았다. 지상부 생체중과 건물중 모두 복합 급액 제어 방법이 타이머 제어보다 높았으며, 100, 150J·cm-2 처리구에서 지상부 생체중이 높았고 100J·cm-2 처리구에서 건물중이 유의하게 높은 값을 나타냈다. 수량 또한 타이머 제어 방법보다 복합 제어 방법에서 유의하게 높았으며 적산 일사량 기준이 작을수록 초기 수량이 증가하였다. 평균 과중은 타이머 제어 급액 시 가장 낮았다. 본 연구 결과 딸기의 정밀 급액 관리를 위하여 적산 일사량과 배지 수분 함량 센서를 이용한 복합 제어 활용 가능성을 확인하였다.

Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.

키워드

과제정보

본 연구는 농촌진흥청 연구개발사업(과제번호: PJ01425601)의 지원에 의해 수행되었음.

참고문헌

  1. Choi E.Y., K.Y. Choi, and Y.B. Lee 2013, Scheduling non-drainage irrigation in coir substrate hydroponics with different percentages of chips and dust for tomato cultivation using a frequency domain reflectometry sensor. Protected Hort Plant Fac 22:248-255. doi:10.12791/ksbec.2013.22.3.248
  2. Choi K.L. 2017, Characteristics of water and nutrient uptake in hydroponics and management of nutrient solution in tomato cultivation using coir substrate. PhD Dissertation, Gyeongsang Natl Univ., Jinju, Korea, pp 37-39. (in Korean)
  3. Choi K.Y., E.Y. Choi, I.S. Kim, and Y.B. Lee 2016, Improving water and fertilizer use efficiency during the production of strawberry in coir substrate hydroponics using a FDR sensor-automated irrigation system. Hortic Environ Biotechnol 57:431-439. doi:10.1007/s13580-016-0072-2
  4. Dorais M., A. Papadopoulos, and A. Gosselin 2001, Greenhouse tomato fruit quality. Hort Rev 26:239-319. doi:10.1002/9780470650806.ch5
  5. Farina E., F.D. Battista, and M. Palagi 2007, Automation of irrigation in hydroponics by FDR sensors-Experimental results from field trials. Acta Hortic 747:193-196. doi:10.17660/ActaHortic.2007.747.21
  6. Hayata Y., T. Tabe, S. Kondo, and K. Inoue 1998, The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. J Jpn Soc Hortic Sci 65:759-766. (in Japanese) doi:10.2503/jjshs.67.759
  7. Kim H.J. and Y.S. Kim 2000, Effect of irrigation control by time and integrated solar radiation on muskmelon quality in perlite culture. J Bio-Env Con 9:66-72. (in Korean)
  8. Kim H.J., S.W. Ahn, K.H. Han, J.Y. Choi, S.O. Chung, M.Y. Roh, and S.O. Hur 2013, Comparison study of water tension and content characteristics in differently textured soils under automatic drip irrigation. Protected Hort Plant Fac 22:341-348. (in Korean) doi:10.12791/ksbec.2013.22.4.341
  9. KOSTAT 2021, Agricultural area survey. Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0017&conn_path=I2 Accessed 28 June 2021
  10. KTSPI 2021, Trade statistics service. Available via https://www.bandtrass.or.kr/customs/total.do?command=CUS001View&viewCode=CUS00201
  11. Ledieu J., Ridder, P.D., Clerck, P.D. and S. Dautrebande 1986, A method of measuring soil moisture by time-domain reflectometry. J Hydrol 88:319-328. doi:10.1016/0022-1694(86)90097-1
  12. Lee S.Y. and Y.C. Kim 2019, Water treatment for closed hydroponic systems. J Korean Soc Environ Eng 41:501-513. (in Korean) doi:10.4491/KSEE.2019.41.9.501
  13. Lim M.Y., S.H. Choi, G.L. Choi, S.H. Kim, and H.J. Jeong 2021, Effects of irrigation amount on fruiting period and EC level by growth period on growth and quality of melon (Cucumis melo L.) using coir substrate hydroponics during autumn cultivation. Hortic Sci Technol 39:446-455. doi:10.7235/HORT.20210040
  14. MAFRA 2021, Agricultural production index. Available via https://mafra.go.kr/bbs/mafra/131/327493/artclView Accessed 7 July 2021
  15. Na T.S., J.G. Kim, K.J. Choi, G.Y. Gi, and Y.K. Yoo 2008, Study on optimum water supply by solar radiation in cut rose(Rosa hybrida cv Cardnal). J Bio-Env Con 17:215-220. (in Korean)
  16. Park S.T., G.H. Jung, H.J. Yoo, E.Y. Choi, K.Y. Choi, and Y.B. Lee 2014, Measuring water content characteristics by using frequency domain reflectometry sensor in coconut coir substrate. Protected Hort Plant Fac 23:158-166. (in Korean) doi:10.12791/KSBEC.2014.23.2.158
  17. Park S.T., K.Y. Choi, and Y.B. Lee 2010, Water content characteristics of coconut coir substrates on different mixture ratios and irrigation rates and times. Kor J Hort Sci Technol 28:227-233. (in Korean)
  18. RDA 2017, Standard manual of characteristics investigation for breeding new varieties of strawberries. RDA, Wanju, Korea, pp 4-29.
  19. RDA 2018, Smart greenhouse guideline. RDA, Haman, Korea, pp 68-73.
  20. RDA 2019, Manual for strawberry cultivation. RDA, Wanju, Korea, pp 144.
  21. Rhee H.C., G.L. Choi, J.W. Jeong, M.H. Cho, K.H. Yeo, D.M. Kim, C.G. An, and D.Y. Lee 2013, Effect of soil water potential on the fruit quality and yield in fertigation cultivation of paprika in summer. Protected Hort Plant Fac 22:378-384. (in Korean) doi:10.12791/ksbec.2013.22.4.378
  22. Rhee H.C., T.C. Seo, G.L. Choi, M.Y. Roh, and M.W. Cho 2010, Effect of air humidity and water content of medium on the growth and physiological disorder of paprika in summer hydroponics. J Bio-Env Con 19:305-310. (in Korean)
  23. Roh M.Y., and Y.B. Lee 1997, Predictive control of concentration of nutrient solution according to integrated solar radiation during one hour in the morning. Acta Hortic 440:256-261. doi:10.17660/ActaHortic.1996.440.45
  24. Sim S.Y., and Y.S. Kim 2009a, Improvement of water and fertilizer use efficiency by daily last irrigation time for tomato perlite bag culture. J Bio-Env Con 18:408-412. (in Korean)
  25. Sim S.Y., and Y.S. Kim 2009b, Management of dripper position in tomato perlite bag culture. J Bio-Env Con 18:413-419. (in Korean)
  26. Starr J.L., and I.C. Paltineanu 1998, Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn. Soil Sci Soc Am J 62:114-122. doi:10.2136/sssaj1998.03615995006200010015x
  27. Topp G.C., Davis, J.L. and A.P. Annan 1980, Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour Res 16:574-582. doi:10.1029/WR016i003p00574
  28. Veldkamp E., and J.J. O'Brien 2000, Calibration of a frequency domain reflectometry sensor for humide tropical soils of volcanic origin. Soil Sci Soc Am J 64:1549-1553. doi:10.2136/sssaj2000.6451549x
  29. Yoo S.H., Park, M.E., Han, G.H. and B.S. Bae 1999, Monitoring of water content and electrical conductivity in paddy soil profile by time domain reflectometry. Kor J Soil Sci Fertil 32:365-374.