DOI QR코드

DOI QR Code

Analysis of Freezing Injury Rate, Hormone and Soluble Sugars between 'Fuji' and 'Hongro' Apple Trees in Flowering Period

개화기 사과 '후지'와 '홍로'의 품종간 저온 피해율, 호르몬과 유리당 분석

  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Jung Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Seul-Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 정재훈 (국립원예특작과학원 과수과) ;
  • 한점화 (국립원예특작과학원 과수과) ;
  • 류수현 (국립원예특작과학원 과수과) ;
  • 조정건 (국립원예특작과학원 과수과) ;
  • 이슬기 (국립원예특작과학원 과수과)
  • Received : 2021.08.31
  • Accepted : 2021.10.09
  • Published : 2021.10.31

Abstract

Freezing damage to fruit trees is frequently occurring due to cold in winter and low temperature in spring to abnormal weather caused by global warming. In particular, the freezing injury of deciduous fruit trees is highly dependent on the developmental stages of the flower buds. And the cold resistance is weakened as the growth progresses, so it is most vulnerable period from flowering to petal fall(post-bloom). Therefore, this study was conducted to analyze the cause of the freezing injury caused by severe low temperature to 'Fuji', which has a late flowering period more than 'Hongro' in April 2020. We investigated freezing injury rate in 'Fuji' and 'Hongro' apple trees damaged by natural low temperature at Boeun-gun, Chungbuk province in Korea. In addition, flower buds in the same developmental stage (tight cluster) were treated artificially low temperature to investigate the injury rate for accurate comparative analysis between varieties, and to analyze the soluble sugar and hormone contents in the flower buds. As a result of survey in natural low temperature, 'Fuji' had a higher injury rate than 'Hongro' in both orchards, and in particular, B orchard 'Fuji' had the highest injury rate of 60.5%. Also there were significantly difference in the freezing injury rate between 'Fuji' and 'Hongro' in artificially low temperature treatments. As a result of analyzing the soluble sugar contents in 'Hongro' was higher than 'Fuji'. Also ABA, IAA and SA contents were more increased in the damaged tissue than in the normal flower buds by low temperature treatments. Consequently, it was assumed that the freezing injury was closely related to soluble sugar contents in the flower buds. In particular, the freezing injury rate was negatively correlated with the sorbitol contents.

최근 지구온난화에 의한 이상기상으로 겨울철 한파와 봄철 저온에 의한 농작물 피해가 심각하게 발생하고 있다. 특히 과수의 개화기 저온피해는 꽃눈의 생육단계에 따라 차이가 있으며 발육이 진전될수록 내한성이 약해져 개화 직전부터 낙화 후 1주까지 한계온도가 다르게 발생한다. 따라서 개화기가 빠른 사과 '홍로'가 '후지'보다 피해가 심각한 것이 일반적이나 2020년 4월 저온피해는 개화기가 늦은 '후지'의 피해가 심하게 발생하여그 원인을 분석하고자 본 연구를 수행하였다. 충북 보은군 사과나무 '후지'와 '홍로'를 동시에 재배하는 2농가를 대상으로 품종 간 피해율 실태조사를 실시하였다. 또한 정확한 품종 간 비교 분석을 위하여 생육단계가 동일한 시료를 선택하여 인위적으로 저온처리(-2.0℃, -4.0℃)를 하여 피해 정도를 조사하고, 원인 분석을 위해 조직 내 유리당과 호르몬 함량을 분석하였다. 실태조사 결과 2농가 모두 '후지'가 '홍로'보다 피해율이 높았으며, 특히 B농가(저지대, 평지) '후지'의 경우 피해율이 60.5%로 가장 높았다. 또한 동일한 생육단계의 시료를 사용한 인위적 저온 처리 시험결과에서도 '후지'와 '홍로' 품종 간 피해율에 유의한 차이가 있었다. 유리당 함량은 저온 피해율이 낮았던 '홍로'가'후지'보다 높았으며, 호르몬 분석 결과 정상 꽃눈보다 손상된 조직에서 ABA, IAA와 SA 함량이 높게 나타났다. 따라서 본 연구 결과 조직내 유리당 함량이 높으면 저온 피해율이 낮은 것을 확인할 수 있었으며, 특히 저온 피해율은 sorbitol 함량과 부의 상관관계를 이루고 있다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 공동연구사업 '주요 과수의 이상저온 피해 해석 및 경감기술 개발(PJ01495001)' 연구 과제의 지원에 의해 수행되었음.

References

  1. Ashraf M.A., and A. Rahman 2018, Cold tolerance in plants; Hormonal regulation of cold stress response. eds S.H. Wani, V. Herah. Springer Nature Switzerland AG. pp 65-88. doi:10.1007/978-3-030-01415-5_4
  2. Baron K.N., D.F. Schroeder, and C. Stasolla 2012, Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48-59. doi:10.1016/j.plantsci.2012.03.001
  3. Borkowska B., and L.E. Powell 1982, Abscisic acid relationship in dormancy of apple buds. Sci Hortic 18:111-117. doi:10.1016/0304-4238(82)90124-8
  4. Cheong J.K., and Y.Y. song 2002, Comparison of effects of frost damage protect methods in apple orchard. J Hortic Sci Technol 20:89. (in Korean)
  5. Choi H.S., Y.S. Jo, W.S. Kim, J.A. Jo, and Y. Lee 2011, Effect of sprinkler and wind machine on frost protection during flowering of pear trees. J Korean Soc Int Agric 23:280-283. (in Korean)
  6. Cindy L.F., and E.N. Ashworth 1995, The relationship between carbohydrates and flower bud hardiness among three Forsythia Taxa. J Amer Soc Hort Sci 120:607-613. doi.org/10.21273/JASHS.120.4.607.
  7. Dong C.J., L. Li, Q.M. Shang, X.Y. Liu, and Z.G. Zhang 2014, Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedling. Planta 240:687-700. doi:10.1007/s00425-014-2115-1
  8. Dong W., P.M. Karolina, H.C. Angela, and X. Dong 2007, Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784-1790. doi:10.1016/J.cub.2007.09.025
  9. Eremina M., W. Rozhon, and B. Poppenberger 2016, Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797-810. doi:10.1007/s00018-015-2089-6
  10. FAO (Food and Agriculture Organization of the United Nations) 2005, Frost Protection: fundamentals, practice, and economics Vol 1.
  11. Hara M., J. Furukawa, A. Sato, T. Mizoguchi, and K. Miura 2012, Abiotic Stress Responses in Plants; Abiotic stress and role of salicylic acid in plants. eds P. Ahmad and M.N.V. Prasad. Springer New York Dordrecht Heidelberg London. pp 235-251. doi; 10.1007/978-1-4614-0634-1_13
  12. Heide O.M. 1993, Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531-540. doi:10.111/j.1399-3054.1993.tb01368. x
  13. Jo Y.S., W.S. Kim, J.A. Jo, Y. J. An, H.J. Jee, and Y.I. Kuk 2012, Frost protection during Flowering of 'Niitaka' pear trees as affected by heating and sprinkler. J Korean Soc Int Agric 24:60-64. (in Korean)
  14. Kang S.K., K.H. Ahn, S.T. Choi, K.R. Do, and K.S. Cho 2014, Effect of planting site and direction of fruiting on fruit frost damage in persimmon (Diospyros kaki 'Fuyu') fruits from environment-friendly orchard. Kor J Organic Agri 22:789-799. (in Korean) doi:10.11625/KJOA.2014.22.4.789
  15. Kerepesi I., M. Toth, and L. Boross 1996, Water-soluble carbohydrates in dried plant. J Agric Food Chem 44:3235-3239. doi:10.1021/jf960242b
  16. Khanizadeh S., D. Buszard, M.A. Fanous, and C.G. Zarkadas 1989, Effect of crop load on seasonal variation in chemical composition and spring frost hardiness of apple flower buds. Can J Plant Sci 69:1277-1284. doi:10.4141/CJP589-155
  17. KMA (Korea Meteorological Administration) 2019, Abnormal report. (in Korean)
  18. Loescher W.H., T. McCamant, and J.D. Keller 1990, Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25:274-281. https://doi.org/10.21273/HORTSCI.25.3.274
  19. Lu S., and M. Rieger 1993, Effect of temperature preconditioning on ovary freezing tolerance of fully opened peach flowers. J Hortic Sci Biotechnol 68:343-347. doi:10.1080/00221589.1993.11516360
  20. Miura K., and Y. Tada 2014, Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:1-12. doi:10.3389/fpls.2014.00004
  21. Murray M. 2020, Critical temperatures for frost damage on fruit trees. digitalcommons.usu.edu.
  22. Pan X.Q., R. Welti, and X.M. Wang 2010, Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986-992. doi:10.1038/7prot.2010.37
  23. Proebsting E.L. Jr. and H.H. Mills 1978, Low temperature resistance of developing flower buds of six deciduous fruit species. J Amer Soc Hort Sci 103:192-198. https://doi.org/10.21273/JASHS.103.2.192
  24. Rahman A. 2013, Auxin: a regulator of cold stress response. Physiol Plant 147:28-35. doi:10.111/j.1399-3054-2012.01617.x
  25. RDA (Rural Development Administration) 2020, Annual report; Development of mitigation technology and analysis of abnormal low temperature damage in the fruit trees. (in Korean)
  26. Rodrigo J. 2000, Spring frosts in deciduous fruit trees-morphological damage and flower hardiness. Sci Hortic 85:155-173. doi:10.1016/S0304-4238(99)00150-8
  27. Salazar-Gutierrez M.R., B. Charves, and G. Hoogenboom 2016, Freezing tolerance of apple flower buds. Sci Hortic 198:344-351. doi:10.1016/j.scienta.2015.12.003
  28. Scott I.M., M.C. Shannon, E.W. Jacqueline, and A.J. Mur. Luis 2004, Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040-1049. doi:10.1104/PP.104.041293
  29. Shibasaki K.Y., M. Uemura, S. Tsurumi, and A. Rahman 2009, Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823-3838. doi:10.1105/tpc.109.069906
  30. Sivaci A. 2006, Seasonal changes of total carbohydrate contents in three varieties of apple (Malus sylvestris Miller) stem cuttings. Sci Hortic 109:234-237. doi:10.1016/j.scienta.2006.04.012
  31. Verma V., P. Ravindran, and P.P. Kumar 2016, Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86. doi:10.1186/s12870-016-0771-y
  32. Zhang J., W. Jia, J. Yang, and A. M. Ismail 2006, Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111-119. doi:10.1016/j.fcr.2005.08.018