DOI QR코드

DOI QR Code

금속문화재 성분분석을 위한 휴대용 XRF 정량분석법 연구

A Study on the Quantitative Analysis of Portable XRF for the Components Analysis of Metal Cultural Heritage

  • 임소망 (부산대학교 대학원 문화유산보존과학전공) ;
  • 권영숙 (부산대학교 문화유산보존연구소) ;
  • 조영래 (부산대학교 재료공학부) ;
  • 정원섭 (부산대학교 재료공학부)
  • Lim, So-Mang (Department of Cultural Heritage and Conservation Science, Graduate School, Pusan National University) ;
  • Kwon, Young-Suk (Cultural Heritage Preservation Research Institute, Pusan National University) ;
  • Cho, Young-Rae (Department of Materials Science and Engineering, Pusan National University) ;
  • Chung, Won-Sub (Department of Materials Science and Engineering, Pusan National University)
  • 투고 : 2021.06.30
  • 심사 : 2021.08.13
  • 발행 : 2021.10.20

초록

본 연구에서는 금-구리합금 표준시료 4점을 대상으로 휴대용 X-ray fluorescence spectrometry(XRF) 검출기별 성분분석을 진행하였고, 그 결과를 바탕으로 ICP-OES 표준값이 기준인 검량선을 작성하여 정확도를 향상시키고자 하였다. 휴대용 XRF 분석 결과, 절대오차는 Au의 경우 0.3~3.7 wt%, Cu의 경우 0.2~8.2 wt%를 보였고, 오차범위와 표준편차가 검출기마다 차이를 보이는 것을 확인할 수 있었다. 또한 검량선을 작성하여 교정한 결과, Au의 상대오차율은 최대 9.8%에서 3.5%로, Cu의 상대오차율은 최대 14%에서 3.7%로 감소하여 정확도가 향상된 것을 알 수 있었다. 이를 바탕으로 미지시료를 활용한 검량선 정확도 재확인 실험을 수행하였고, 미지시료의 측정값이 검량선 범위 안에 포함된다는 것을 확인할 수 있었다. 따라서 금속문화재의 성분을 정확하게 분석하기 위해서는 유물에 적합한 검출기인지 확인한 후에 각 원소에 대한 검량선을 작성하여 교정해주는 것이 필요하다고 판단된다.

In this study we conducted component analyses of portable XRF detectors using four Au-Cu alloy standard samples to improve their accuracy by drawing up a calibration curve based on ICP-OES standard values. The portable XRF analysis found absolute errors of 0.3 to 3.7 wt% for Au and 0.2 to 8.2 wt% for Cu, confirming that the error range and standard deviation differed from one detector to another. Furthermore, the calibration curve improved their accuracy, such that the relative error rates of Au and Cu decreased from 9.8% and 14% to 3.5% and 3.7%, respectively. Accordingly, an experiment to confirm the calibration curve was conducted using unknown samples, finding that the measured values of the unknown samples fell on the calibration curve. Therefore, to accurately analyze the components of metal cultural heritage items, it is necessary to prepare a calibration curve for each element after checking whether the detector is suitable for the artifact.

키워드

과제정보

본 연구는 부산대학교 기본연구지원사업(2년)에 의해 이루어진 연구임을 명기하며, 이에 감사드린다.

참고문헌

  1. AMPTEK Inc., 2019, Comparison of Silicon Drift Detector (SDD) and Si-PIN Detector. https://www.amptek.com/resources/application-notes (June 3, 2021)
  2. Blaber, M.G., Ford, M.J. and Cortie, M.B., 2010, The physics and optical properties of gold. Gold science and applications, CRC press, 13-30.
  3. Chung, G.Y., 2002, Iron technologies of the Three Kingdoms Period in Korea. MUNHWAJAE Korean Journal of Cultural Heritage Studies, 35, 138-158. (in Korean) https://doi.org/10.22755/KJCHS.2002.35.138
  4. EAG Labortories, 2020, Analytical resolution VS. detection limit. https://www.eag.com/techniques (November 24, 2020)
  5. Gang, D.I., Chung, G.Y. and Sim, P.S., 1990, Preservation and restoration treatment of bronze drops excavated in Deoksan, Chungnam. Conservation Studies, 11, 62-86. (in Korean)
  6. Gang, H.T. and Chung, G.Y., 1988, Fluorescence X-ray analysis of bronze artifacts excavated from Chopo-ri Site. Hampyeong Chopo-ri site, Gwangju National Museum and Jeollanam-do, 141-153. (in Korean)
  7. Gang, H.T. and Moon, S.Y., 1997, Component analysis of bronze relics by atomic absorption spectroscopy - Focused on the excavated products from Hwangnamdaechong and Anapji. Conservation Studies, 18, 74-81. (in Korean)
  8. Guerra, M., Manso, M., Longelin, S., Pessanha, S. and Carvalho, M.L., 2012, Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. Journal of Instrumentation, 7(10), C10004. https://doi.org/10.1088/1748-0221/7/10/C10004
  9. Han, S.I., Kim, G.H., 2010, A characteristics of chemical compositions and producing techniques on the excavated golden artifacts from Wanggung-ri Site. Paekche Kingdom's Culture, 42, 211-231. (in Korean with English abstract)
  10. Hwang, J.Y., Lee, S.W., Kim, K.H., Huh, Y.J., Yoo, E.J., Kim, B.K., Kim, H.J., Lee, H.R., Ko, S.H., Kim, J.H., Jeon, S.A., Lee, J.J., Lee, K.R., Hong, S.Y., Chung, H.M. and Chung, J.W., 2019, Comparison of method validation for test and inspections. Journal of Environmental Analysis, Health and Toxicology, 22(3), 104-116. (in Korean) https://doi.org/10.36278/jeaht.22.3.104
  11. Im, S.G., Jeong, Y.D., Park, D.G. and Gang, S.G., 1991, A study on ancient gilt-bronze plating techniques-focus on artifacts excavated from Hwangnamdaechong tomb. Conservation Studies, 12, 42-62. (in Korean)
  12. Kim, S.K., 2006, Preservative treatment by metal working techniques. Danhao Culture Research, 10, 104-121. (in Korean)
  13. Korean Agency for Technology and Standard, 2017, Linear calibration using reference materials. https://e-ks.kr/streamdocs/view/sd;streamdocsId=72059221923743744 (June 2, 2021)
  14. Kwon, H.A., 1999, A study on the metal materials of ancient Korea. The Journal of the Korea Society of Art & Design, 2(1), 69-86. (in Korean with English abstract)
  15. Kwon, H.N., Yoo, D.W., Lee, J.J., Han, M.S., 2014, Material characteristics of gold artifacts of sarira reliquary inside stone pagoda of Mireuksa temple site. MUNHWAJAE Korean Journal of Cultural Heritage Studies, 47(4), 210-223. (in Korean with English abstract) https://doi.org/10.22755/KJCHS.2014.47.4.210
  16. Kwon, J.W., Lee, K.S., 2003, Calibration: theory and practice. Journal of the Korean society of Agricultural Chemistry and Biotechnology, 46(4), 271-279. (in Korean with English abstract)
  17. Lim, D.S., 2009, Quantitative evaluation of energy dispersive X -ray fluorescence spectroscopy for the composition analysis on nonferrous metal artifacts. Master's Dissertation, Kongju National University, Gongju, 1-50. (in Korean with English abstract)
  18. Moon, W.S., 2004, Scientific technological study on the metallic craft and art of ancient Korea -gilding and granulation techniques-. Ph.D. dissertation, Chungang University, Seoul, 1. (in Korean with English abstract)
  19. Moon, W.S., Cho, N.C., Kang, D.I., Lee, M.H., 2000, Study on the sarira reliquary from the east three-story pagoda on the Gamunsa temple site. National Research Institute of Cultural Heritage, Daejeon, 154-171. (in Korean)
  20. Oxford Instruments, 2012, Silicon Drift Detectors Explained. https://nano.oxinst.com/products/sem-and-fib (June 7, 2021)
  21. Park, K.M., 2017, Analytical Chemistry. Freedomacademy, Paju, 26-37.
  22. PerkinElmer Inc., 2018, Atomic spectroscopy, a guide to selecting the appropriate technique and system. https://www.perkinelmer.com/libraries/BRO_WorldLeaderAAICPMSICPMS (February 22, 2021)
  23. Quaglia, R., Bombelli, L., Busca, P., Fiorini, C., Occhipinti, M., Giacomini, G., Ficorella, F., Picciotto, A., Piemonte, C., 2015, Silicon drift detectors and CUBE preamplifiers for high-resolution X-ray spectroscopy. IEEE Transactions on Nuclear Science, 62(1), 221-227. https://doi.org/10.1109/TNS.2014.2379941
  24. Song, K.H., 1997, Iron culture of the Three Kingdoms Age. The development of ironworking in Korea, Cheongju National Museum, 96-97. (in Korean)
  25. University Chemical Textbook Research Association, 2017, Exploring chemical analysis. Donghwa Technology Publishing, Paju, 42-46.