DOI QR코드

DOI QR Code

Distributed loads in modified couple stress thermoelastic diffusion with non-local and phase-lags

  • Kumar, Rajneesh (Department of Mathematics, Kurukshetra University) ;
  • Kaushal, Sachin (Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University) ;
  • Dahiya, Vikram (Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University)
  • 투고 : 2021.04.27
  • 심사 : 2021.10.06
  • 발행 : 2021.10.25

초록

Thermomechanical loading is considered to examine the non-local and phase-lags effects in a modified couple stress thermoelastic (MCT) half space. Governing equations are solved by using Laplace and Fourier transform techniques. Concentrated source in time and distributed sources with space variable are taken to demonstrate the application. Distributed sources are further classified as uniformly distributed source (UDS) and linearly distributed source (LDS) for mechanical, thermal and chemical potential sources. Numerical results are calculated for displacements, stresses, temperature distribution and chemical potential and are disucussed by displaying graphically. Some particular cases are deduced.

키워드

참고문헌

  1. Abbas, I.A. and Marin, M. (2018), "Analytical solutions of a two-dimensional generalised thermoelastic diffusion problem due to laser pulse", Iran. J. Sci. Technol.: Tran. Mech. Eng., 42(3), 57-71. https://doi.org/10.1007/s40997-017-0077-1.
  2. Abouelregal, A.E. and Zenkour, A.M. (2014), "Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating", Iran. J. Sci. Technol.: Tran. Mech. Eng., 38(M2), 321-335. https://doi:10.22099/IJSTM.2014.2498.
  3. Borjalilou, V., Asghari, M. and Taati, E. (2020), "Thermoelastic damping in nonlocal nanobeams considering dual phase lagging effect", J. Vib. Control, 26(11-12), 1-12. https://doi.org/10.1177%2F1077546319891334. https://doi.org/10.1177%2F1077546319891334
  4. Cao, B.Y. and Guo, Z.Y. (2007), "Equation of motion of a phonon gas and non-Fourier heat conduction", J. Appl. Phys., 5, 053503. https://doi.org/10.1063/1.2775215.
  5. Edelen, D.G.B. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rat. Mech. Anal., 43, 24-35. https://doi.org/10.1007/BF00251543.
  6. Eringen, A.C. (1972a), "On nonlocal fluid mechanics", Int. J. Eng. Sci., 10(6), 561-575. https://doi.org/10.1016/0020-7225(72)90098-5.
  7. Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  8. Eringen, A.C. (1981), "Nonlocal continuum theory of liquid crystals", Molecul. Crystal. Liquid Crystal., 75(1), 321-343. https://doi.org/10.1080/00268948108073623.
  9. Eringen, A.C. (1991), "Memory dependent nonlocal electromagnetic elastic solids and superconductivity", J. Math. Phys., 32(3), 787-796. https://doi.org/10.1063/1.529372.
  10. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York, United States.
  11. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  12. Guo, Z.Y. and Hou, Q.W. (2010), "Thermal wave based on the thermomass model", J. Heat Transf., 7, 072403. https://doi.org/10.1115/1.4000987.
  13. Kumar, R. and Abbas, I.A. (2016), "Disturbance due to thermomechanical sources in porothermoelastic medium", Strength Mater., 48(2), 315-322. http://doi.org/10.1007/s11223-016-9767-y.
  14. Kumar, R., Devi, S. and Sharma V. (2017), "Effect of hall current and rotation in modified couple stress generalised thermoelastic half space due to ramp type heating", J. Solid Mech., 9(3), 527-542.
  15. Kumar, R., Devi, S. and Sharma, V. (2019), Resonance of nanoscale beam due to various sources in modified couple stress thermoelastic diffusion with phase lags", Mech. Mech. Eng., 23(1), 36-49. http://doi.org/10.2478/mme-2019-0006.
  16. Kumar, R., Miglani, A. and Rani, R. (2018), "Transient analysis of nonlocal microstretch thermoelastic thick circular plate with phase lags", Mediterran. J. Model. Simul., 9, 25-42.
  17. Marin, M., Abbas, I.A. and Kumar, R. (2014), "Relaxed Saint-Venant principle for thermoelastic micropolar diffusion", Struct. Eng. Mech., 51(4), 651-662. http://doi.org/10.12989/sem.2014.51.4.651.
  18. Mashat, D.S. and Zenkour, A.M. (2020), "Modified DPL Green-Naghdi theory for thermoelastic vibration of temperature dependent nanobeams", Result. Phys., 16, 102845. https://doi.org/10.1016/j.rinp.2019.102845.
  19. Sharma, K. (2012), "Reflection of plane waves in thermodiffusive elastic half space with voids", Multidisc. Model. Mater. Struct., 8(3), 269-296. https://doi.org/10.1108/15736101211269113.
  20. Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. http://doi.org/10.2478/ijame-2014-0029.
  21. Sherief, H.H. and Saleh, H. (2005), "A half space problem in the theory of generalised thermoelastic diffusion", Int. J. Solid. Struct., 42(15), 4484-4493. https://doi.org/10.1016/j.ijsolstr.2005.01.001.
  22. Sherief, H.H., Hamza, F.A. and Saleh H.A. (2004), "The theory of generalised thermoelastic diffusion", Int. J. Eng. Sci., 42(5-6) 591-608. https://doi.org/10.1016/j.ijengsci.2003.05.001.
  23. Tzou, D.Y. (1992), "Thermal shock phenomena under high rate response in solids", Ann. Rev. Heat Transf., 4, 111-185. https://doi.org/10.1615/ANNUALREVHEATTRANSFER.V4.50.
  24. Tzou, D.Y. (1995a), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  25. Tzou, D.Y. (1995b), "The generalised lagging response in small scale and high rate heatng", Int. J. Heat Mass Transf., 38(17), 3231-3240. https://doi.org/10.1016/0017-9310(95)00052-B.
  26. Tzou, D.Y. and Guo, Z.Y. (2010), "Nonlocal behavior in thermal lagging", Int. J. Therm. Sci., 49(7), 1133-1137. https://doi.org/10.1016/j.ijthermalsci.2010.01.022.
  27. Yu, J., Tian, X.G. and Xiong, Q.L. (2016), "Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity", Eur. J. Mech.-A/Solid., 60, 238-253. http://doi.org/10.1016/j.euromechsol.2016.08.004.
  28. Zhang, L., Bhatti, M.M., Marin, M. and S. Makheimer, K. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide nanoparticles", Entropy, 22, 1070. https://doi.org/10.3390/e22101070.