DOI QR코드

DOI QR Code

텍스트 마이닝을 활용한 미국 노년 소비자와 애완용 로봇 간 상호작용에 대한 분석: Joy For All Companion Pets에 대한 아마존 리뷰를 중심으로

Text-Mining Analysis on the Interaction between the American Consumers Aged over 60 and Companion Pets Robots: Focused on Amazon Reviews for Joy For All Companion Pets

  • 정예은 (성균관대학교 소비자학과/소셜이노베이션융합전공) ;
  • 이유림 (성균관대학교 소비자학과) ;
  • 정재은 (성균관대학교 소비자학과/소셜이노베이션융합전공)
  • Chung, Yea-Eun (Department of Consumer Science / Convergence Program for Social Innovation, SungKyunKwan University) ;
  • Lee, Yu Lim (Department of Consumer Science, SungKyunKwan University) ;
  • Chung, Jae-Eun (Department of Consumer Science / Convergence Program for Social Innovation, SungKyunKwan University)
  • 투고 : 2021.08.09
  • 심사 : 2021.10.20
  • 발행 : 2021.10.28

초록

본 연구는 정서 지원 애완용 로봇에 대한 소비자의 담론을 살펴보고 키워드를 통해 해당 제품에 대한 노년 소비자의 반응을 파악하고자 아마존 사이트 내 하즈브로(Hasbro)의 Companion Pets 제품 사용에 대한 미국 소비자들의 리뷰를 수집하고, R을 이용하여 단어 빈도분석, 토픽모델링 LDA 분석을 실시하였다. 첫째, 키워드 빈도분석 결과 애완용 로봇의 형태가 실제 동물과 유사한지에 대한 관심이 높은 것으로 나타났다. 둘째, 토픽모델링 결과 5개의 토픽으로 인지, 감정, 행동적 반응이 도출되었으며 이는 긍정 및 부정으로 크게 분류되었다. 셋째, 소비자와 애완용 로봇의 상호작용에 영향을 미치는 사용자, 제품 및 환경적 특성이 확인되었다. 애완용 로봇은 반려동물을 키우기 어려운 사람들이 이를 대체하기 위하여 사용하고, 인지적 어려움이 있는 노년 소비자와 신체적 어려움이 있는 소비자가 이를 이용하는 것으로 나타났다. 본 연구는 코로나19와 같은 팬데믹 상황에서 정서 지원 기능을 수행하는 애완용 로봇에 대하여 이해하고, 소비자의 효용을 극대화하는 서비스를 제공하는데 도움을 줄 것으로 기대한다.

This study explores consumers' responses to socially assistive robotics by using text-mining method focusing on Companion Pets from Hasbro as it gives emotional support. We conducted text frequency analysis, LDA analysis using R programming. The key findings are 1)the most frequently used words the mimicry of living pets and the appearance of companion pets, 2)the five topics were derived from the LDA analysis and classified keywords in each topic split between positive and negative, 3)user, product, environment affect the interaction between consumer and companion pets, 4)consumers who have difficulty in cognition and physical conditions use companion pets to replace living pets. This study provides an understanding of consumer responses in companion pets and gives practical implications that may improve the efficacy of usage for consumers and understand the companion robot, which provides emotional support in COVID-19.

키워드

참고문헌

  1. S. Bedaf, G. J. Gelderblom & L. De Witte. (2015). Overview and Categorization of Robots Supporting Independent Living of Elderly People: What Activities Do They Support and How Far Have They Developed. Assistive technology: the official journal of RESNA, 27(2), 88-100. DOI : 10.1080/10400435.2014.978916
  2. P. Eachus. (2014). Pets, people and robots: The role of companion animals and robopets in the promotion of health and wellbeing. International Journal of Health Promotion and Education, 39(1), 7-13. DOI : 10.1080/14635240.2001.10806140
  3. Abbott et al. (2019). How do "robopets" impact the health and well-being of residents in care homes? A systematic review of qualitative and quantitative evidence. International Journal of Older People Nursing, 14(3), e12239. DOI : 10.1111/opn.12239
  4. H. S. Jo, J. H. Kim & S. Kim. (2019). Factors related to the effectiveness in the use of an ICT-based toy robot for the in-home care of community dwelling elderly. Korean Journal of Health Education and Promotion, 36(5), 43-51. DOI : 10.14367/kjhep.2019.36.5.43
  5. J. H. Kim, B. S. Seo, J. J. Cho & J. D. Choi. (2021). Life Companion Robots. Electronics and Telecommunications Trends, 36(1), 12-21. DOI : 10.22648/ETRI.2021J.360102
  6. Vahia et al. (2020). COVID-19, Mental Health and Aging: A Need for New Knowledge to Bridge Science and Service. The American Journal of Geriatric Psychiatry, 28(7), 695-697. DOI : 10.1016/j.jagp.2020.03.007
  7. K. Wada & T. Shibata. (2007). Living With Seal Robots-Its Sociopsychological and Physiological Influences on the Elderly at a Care Hose. in IEEE Transactions on Robotics, vol. 23, no. 5, pp. 972-980, Oct. 2007. DOI : 10.1109/TRO.2007.906261
  8. R. Sparrow. (2002). The march of the robot dogs. Ethics and Information Technology, 4, 305-318. DOI : 10.1023/A:1021386708994
  9. Y. H. Wu., V. Cristancho-Lacroix., C. Fassert, V. Faucounau., J. de Rotrou & A. S. Rigaud. (2016). The Attitudes and Perceptions of Older Adults With Mild Cognitive Impaired Toward an Assitive Robot. Journal of Applied Gerontology, 35(1), 3-17. DOI : 10.1177/0733464813515092
  10. National Institute of Advanced Industrial Science and Technology(NIAIST). (2006, February 13). Paro found to improve brain func-tion in patients with cognition disorders. Retrieved June 1, 2007, from http://www.aist.go.jp/aist_e/latest_research/2006/20060213/20060213.html# National
  11. T. Shibata & J. F. Coughlin. (2014). Trends of Robot Therapy with Neurological Therapeutic Seal Robot, PARO. The American Journal of Robotics and Mechatronics, 26(4), 418-425. DOI : 10.20965/jrm.2014.p0418
  12. N. Geva., F. Uzefovsky & S. Levy-Tzedek. (2020). Touching the social robot PARO reduces pain perception and salivary oxytocin levels. Scientific Reports, 10(1). DOI : 10.1038/s41598-020-66982-y
  13. T. Tamura et al. (2004). Is an Entertainment Robot Useful in the Care of Elderly People With Severe Dementia?. The Journals of Gerontology: Series A, 59(1), M83-M85. DOI : 10.1093/gerona/59.1.m83
  14. T. Shibata & K. Wada. (2011). Robot Therapy: A New Approach for Mental Healthcare of the Elderly - A Mini-Review. Gerontology, 57(4), 378-386 DOI : 10.1159/000319015
  15. T. Shibata, K. Wada, T. Saito & K. Tanie. (2004). Robotic therapy at an elderly institution using a therapeutic robot. Annual Review of CyberTherapy and Telemedicine, 2, 125-135.
  16. P. A. Hancock, D. R. Billings., K. E. Schaefer., J. Y. C. Chen., E. J. De Visser & R. Parasuraman. (2011). A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(5), 517-527. DOI : 10.1177/0018720811417254
  17. E. J. Lee & Y. J. Sung. (2020). "Hey Kakao!": A Qualitative study on the Interaction between AI devices and its Consumer. THE KOREAN JOURNAL OF CONSUMER AND ADVERTISING PSYCHOLOGY, 21(1), 21-53. DOI : 10.21074/KJLCAP.2020.21.1.21
  18. T. H. Hong, H. Niu, G. Ren & J.-Y. Park. (2018). Multi-Topic Sentiment Analysis using LDA for Online Review. Korea Intelligent Information Systems Society: The Journal of Information Systems, 27(1), 89-110. DOI : 10.5859/KAIS.2018.27.1.89
  19. I. H. Stanley, Y. Conwell, C. Bowen & K. A. Van Orden. (2014). Pet ownership may attenuate loneliness among older adult pri-mary care patients who live alone. Aging & Mental Health, 18(3), 394-399. DOI : 10.1080/13607863.2013.837147
  20. Hudson, J., Ungar, R., Albright, L., Tkatch, R., Schaeffer, J., & Wicker, E. R.. (2020). Robotic Pet Use Among Community-Dwelling Older Adults. The Journals of Gerontology: Series B, 75(9), 2018-2028. DOI : 10.1093/geronb/gbaa119
  21. S. Coghlan, J. Waycott, B. B. Neves & F. Vetere. (2018). Using robot pets instead of companion animals for older people. In Proceedings of the 30th Australian Conference on Computer-Human Interaction. ACM. DOI : 10.1145/3292147.3292176
  22. O. J. Kim. Managing risk factors for the Animal-Assisted Therapy. Journal of Korean Veterinary Medical Association, 48(10), 631-635.
  23. H. K. Sung. (2016. 01. 27). "Silbo", elderly-care & "Mero", guidance robots are on sale, 30million won for each, but sales are slow due to high prices. Seoul Economy Daily. https://www.sedaily.com/NewsVIew/1KRDFTQCF6
  24. J. Goetz., S. Kiesler & A. Powers. (2003). Matching robot appearance and behavior to tasks to improve human-robot cooperation. The 12th IEEE International Workshop on Robot and Human Interactive Communication, 2003. Proceedings. ROMAN 2003., 2003, pp. 55-60. DOI : 10.1109/ROMAN.2003.1251796
  25. S. Thunberg., L. Ronnqvist & T. Ziemke. (2020). Do Robot Pets Decrease Agitation in Dementia Patients? In Social Robotics, 616-627. Springer International Publishing. DOI : 10.1007/978-3-030-62056-1_51
  26. H. L. Bradwell., K. J. Edwards., R. Winnington., S. Thill & R. B. Jones. (2019). Companion robots for older people: importance of user-centred design demonstrated through observations and focus groups comparing preferences of older people and roboticists in South West England. BMJ open, 9(9), e032468. DOI : 10.1136/bmjopen-2019-032468
  27. H. L. Bradwell, R. Winnington, S. Thill & R. B. Jones. (2020). Longitudinal Diary Data. In Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction. ACM. DOI : 10.1145/3371382.3378256
  28. R. Kachouie, S. Sedighadeli, R. Khosla & M.-T. Chu. (2014). Socially Assistive Robots in Elderly Care: A Mixed-Method Systematic Literature Review. International Journal of Human-Computer Interaction, 30(5), 369-393. DOI : 10.1080/10447318.2013.873278
  29. M. Heerink. (2011). Exploring the influence of age, gender, education and computer experience on robot acceptance by older adults. 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI). 147-148. DOI : 10.1145/1957656.1957704
  30. N. Epley, A. Waytz, S. Akalis & J. T. Cacioppo. (2008). When We Need A Human: Motivational Determinants of Anthropomorphism. Social Cognition, 26(2), 143-155. DOI : 10.1521/soco.2008.26.2.143
  31. K. Wada, T. Shibata, T. Musha & S. Kimura. (2005). Effects of robot therapy for demented patients evaluated by EEG. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 1552-1557. DOI : 10.1109/iros.2005.1545304
  32. K. Wada., T. Shibata., T. Musha & S. Kimura. (2008). Robot therapy for elders affected by dementia. IEEE Engineering in Medicine and Biology Magazine, 27(4), 53-60. DOI : 10.1109/memb.2008.919496
  33. R. Bemelmans., G. J. Gelderblom., P. Jonker & L. de Witte. (2012). Socially Assistive Robots in Elderly Care: A Systematic Review into Effects and Effectiveness. Journal of the American Medical Directors Association, 13(2), 114-120.e1. DOI : 10.1016/j.jamda.2010.10.002
  34. T. Shibata., K. Wada & K. Tanie. (2003). Subjective evaluation of a seal robot at the National Museum of Science and Technology in Stockholm. The 12th IEEE International Workshop on Robot and Human Interactive Communication, 2003. Proceedings. ROMAN 2003., 397-402. DOI : 10.1109/roman.2003.1251878
  35. T. Klamer., S. Ben Allouch & D. Heylen. (2011). "Adventures of Harvey" - Use, Acceptance of and Relationship Building with a Social Robot in a Domestic Environment. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp. 74-82). Springer Berlin Heidelberg. DOI : 10.1007/978-3-642-19385-9_10
  36. C. Breazeal. (2003). Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59(1-2), 119-155. DOI : 10.1016/s1071-5819(03)00018-1
  37. B. de Ruyter., P. Saini., P. Markopoulos & A. van Breemen. (2005). Assessing the effects of building social intelligence in a robotic interface for the home. Interacting with Computers, 17(5), September 2005, 522-541. DOI : 10.1016/j.intcom.2005.03.003
  38. M. Heerink., B. Krose., V. Evers & B. Wielinga. (2008). The influence of social presence on acceptance of a companion robot by older people. Journal of Physical Agents (joPha), 2(2), 33-40. DOI : 10.14198/jopha.2008.2.2.05
  39. H. S. Shin & C. H. Jeon. (2018). When Robots Meet the Elderly: The Contexts of Interaction and the Role of Mediators. Korean Association of Science and Technology Studies, 18(2), 135-179.
  40. Y. Jin & O. Kwon. (2019). An Empirical Study on the Effects of Category and Role of Robot and Human Factors on the Shape of Uncanny Valley. The Journal of Korean Institute of Communications and Information Sciences, 44(3), 540-553. https://doi.org/10.7840/kics.2019.44.3.540
  41. H-C Hwang & S-H Song. (2019). A Study on the Factors Affecting the Acceptance of Logistics Robot in the Fulfillment Center Using the Technology Acceptance Model. Journal of the Korea Academia-Industrial cooperation Society, 20(12), 287-297. https://doi.org/10.5762/KAIS.2019.20.12.287
  42. D. B. Brecher. (2019). Use of a Robotic Cat to Treat Terminal Restlessness: A Case Study. Journal of Palliative Medicine, 23(3), 432-434. https://doi.org/10.1089/jpm.2019.0157
  43. C. D. Kidd., W. Taggart & S. Turkle. (2006). A sociable robot to encourage social interaction among the elderly. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE. 3972-3976. DOI : 10.1109/robot.2006.1642311
  44. E. J. Lee, Y. J. Sung & J. M. Lee. (2019). Effects of User's Characteristics and Perceived Value on VPA Satisfaction. The Korean Journal of Consumer and Advertising Psychology, 20(1), 31-54. DOI : 10.21074/kjlcap.2019.20.1.31
  45. D. M. Blei., A. Y. Ng & M. I. Jordan. (2003). Latent dirichlet allocation. Journal of machine learning research, 3(Jan), 993-1022.
  46. Y. U. Park & K. Y. Chung. (2021). A study on the analysis of customer's sentiment using DMR(Dirichlet Multinomial Regression) topic modeling based on online review big data: Focusing on the foreign customer's reviews of domestic 5 star deluxe hotels. Korean Journal of Hospitality & Tourism, 30(2), 1-20. DOI : 10.24992/KJHT.2021.2.30.02.1
  47. D. I. Yeon, G. Y. Park & H. W. Kim. (2020). User Experience Analysis and Management Based on Text Mining : A Smart Speaker Case. Information Systems Review, 22(2), 77-99. https://doi.org/10.14329/isr.2020.22.2.077
  48. J. H. Park & M. Song. (2013). A study on the Research Trends in Library & Information Science in Korea using Topic Modeling. Journal of the Korean Society for information Management, 30(1), 7-32. DOI : 10.3743/KOSIM.2013.30.1.007
  49. T. L. Griffiths & M. Steyvers. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(Supplement 1), 5228-5235. DOI : 10.1073/pnas.0307752101s
  50. J. Cao., T. Xia., J. Li., Y. Zhang & S. Tang. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7-9), 1775-1781. DOI : 10.1016/j.neucom.2008.06.011
  51. R. Arun., V. Suresh., C. E. Veni Madhavan & M. N. Narasimha Murthy. (2010). On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations. In Advances in Knowledge Discovery and Data Mining (pp. 391-402). Springer Berlin Heidelberg. DOI : 10.1007/978-3-642-13657-3_43
  52. Y. H. Hong. (2019). Issue analysis of the admission officer system using topic analysis. The Korean Statistical Society, 32(3), 423-434. DOI : 10.5351/KJAS.2019.32.3.423
  53. K. Kaushik., R. Mishra., N. P. Rana & Y. K. Dwivedi. (2018). Exploring reviews and review sequences on e-commerce platform: A study of helpful reviews on Amazon.in. Journal of Retailing and Consumer Services, 45, 21-32. DOI : 10.1016/j.jretconser.2018.08.02
  54. K. O. Kim. (2020). Analysis of Research Trends in Consumer Science through Text Mining. Journal of Consumer Studies, 31(5), 19-47. DOI : 10.35736/JCS.31.5.2
  55. T. W. Lee. (2020). A Study on Analysis of Topic Modeling using Customer Reviews based on Sharing Economy: Focusing on Sharing Parking. Journal of the Korea Industrial Information Systems Research, 25(3), 39-51. DOI : 10.9723/jksiis.2020.25.3.039
  56. H. S. Ji, J. H. Joh & H. S. Lim. (2010). A Detection Method of Similar Sentences Considering Plagiarism Patterns of Korean Sentence. The Journal of Korean Association of Computer Education, 13(6), 79-89. https://doi.org/10.32431/KACE.2010.13.6.008
  57. D. H. Ko & H. J. Kim. (2018). Comparison of cluster models for group chat rooms. Journal of Korean Institute of Intelligent Systems, 28(2), 138-145. https://doi.org/10.5391/jkiis.2018.28.2.138
  58. J. H. Lee & H. K. Lee. (2015). A study on unstructured text mining algorithm through R programming based on data dictionary. Journal of the Korea Industrial Information Systems Research, 20(2), 113-124. DOI : 10.9723/JKSIIS.2015.20.2.113
  59. P. L. Chung, H. C. Ahn & K. Y. Kwahk. (2019). Identification of Core Features and Values of Smartphone Design using Text Mining and Social Network Analysis. The Korean Academic Association of Business Administration, 32(1), 27-47. DOI : 10.18032/kaaba/2019.32.1.27
  60. N. Murzintcev. (2016). ldatuning, R package. https://cran.r-project.org/web/packages/ldatuning/ldatun ing.pdf
  61. C. Sievert & K. E. Shirley. (2014). LDAvis: A Method for Visualizing and Interpreting Topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, pp. 63-70.
  62. J. H. Park & H. J. Oh. (2017). Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: focused on LDA and HDP. Journal of Korean Library and Information Science Society, 48(4), 235-258. DOI : 10.16981/kliss.48.201712.235
  63. S. J. Park., Y. K. Suh., J. S. Kim & J. W. Kwon. (2020). Analysis for internet health counseling about precious puberty using text mining and topic modeling. Journal Of Korean Society For Health Education And Promotion, 37(3), 711-84. DOI : 10.14367/kjhep.2020.37.3.71
  64. M. J. Kim. (2020). How do Media Represent Humidifier Disinfectant Disaster?: A Content Analysis and Topic Modeling. The Korean Association for Environment Sociology, 24(1), 181-224. DOI : 10.22734/ECO.24.1.202006.005
  65. A. Tapus., C. Tapus & M. J. Mataric. (2009). The use of socially assistive robots in the design of intelligent cognitive therapies for people with dementia. 2009 IEEE International Conference on Rehabilitation Robotics, 2009, pp. 924-929. DOI : 10.1109/ICORR.2009.5209501