Acknowledgement
This research was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean government (MSIT) (No. 2020R1C1C1008852) and Chung-Ang University Research Scholarship Grants in 2020.
References
- Adhami, F., Liao, G., Morozov, Y. M., Schloemer, A., Schmithorst, V. J., Lorenz, J. N., Dunn, R. S., Vorhees, C. V., Wills-Karp, M., Degen, J. L., Davis, R. J., Mizushima, N., Rakic, P., Dardzinski, B. J., Holland, S. K., Sharp, F. R. and Kuan, C. Y. (2006) Cerebral ischemiahypoxia induces intravascular coagulation and autophagy. Am. J. Pathol. 169, 566-583. https://doi.org/10.2353/ajpath.2006.051066
- Alirezaei, M., Kemball, C. C., Flynn, C. T., Wood, M. R., Whitton, J. L. and Kiosses, W. B. (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6, 702-710. https://doi.org/10.4161/auto.6.6.12376
- Anding, A. L. and Baehrecke, E. H. (2017) Cleaning house: selective autophagy of organelles. Dev. Cell 41, 10-22. https://doi.org/10.1016/j.devcel.2017.02.016
- Ariosa, A. R. and Klionsky, D. J. (2016) Autophagy core machinery: Overcoming spatial barriers in neurons. J. Mol. Med. 94, 1217-1227. https://doi.org/10.1007/s00109-016-1461-9
- Azarnia Tehran, D., Kuijpers, M. and Haucke, V. (2018) Presynaptic endocytic factors in autophagy and neurodegeneration. Curr. Opin. Neurobiol. 48, 153-159. https://doi.org/10.1016/j.conb.2017.12.018
- Bailly, Y. (2013) Autophagy - A Double-Edged Sword: Cell Survival or Death? IntechOpen, London.
- Ban, B. K., Jun, M. H., Ryu, H. H., Jang, D. J., Ahmad, S. T. and Lee, J. A. (2013) Autophagy negatively regulates early axon growth in cortical neurons. Mol. Cell. Biol. 33, 3907-3919. https://doi.org/10.1128/MCB.00627-13
- Bar-Yosef, T., Damri, O. and Agam, G. (2019) Dual role of autophagy in diseases of the central nervous system. Front. Cell. Neurosci. 13, 196. https://doi.org/10.3389/fncel.2019.00196
- Benito-Cuesta, I., Diez, H., Ordonez, L. and Wandosell, F. (2017) Assessment of autophagy in neurons and brain tissue. Cells 6, 25. https://doi.org/10.3390/cells6030025
- Berger, Z., Ravikumar, B., Menzies, F. M., Oroz, L. G., Underwood, B. R., Pangalos, M. N., Schmitt, I., Wullner, U., Evert, B. O., O'Kane, C. J. and Rubinsztein, D. C. (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433-442. https://doi.org/10.1093/hmg/ddi458
- Bernard, A. and Klionsky, D. J. (2013) Autophagosome formation: tracing the source. Dev. Cell 25, 116-117. https://doi.org/10.1016/j.devcel.2013.04.004
- Bhaskara, R. M., Grumati, P., Garcia-Pardo, J., Kalayil, S., Covarrubias-Pinto, A., Chen, W., Kudryashev, M., Dikic, I. and Hummer, G. (2019) Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 10, 2370. https://doi.org/10.1038/s41467-019-10345-3
- Binotti, B., Pavlos, N. J., Riedel, D., Wenzel, D., Vorbruggen, G., Schalk, A. M., Kuhnel, K., Boyken, J., Erck, C., Martens, H., Chua, J. J. and Jahn, R. (2015) The GTPase Rab26 links synaptic vesicles to the autophagy pathway. eLife 4, e05597. https://doi.org/10.7554/elife.05597
- Boland, B., Kumar, A., Lee, S., Platt, F. M., Wegiel, J., Yu, W. H. and Nixon, R. A. (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28, 6926-6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008
- Briz, V., Hsu, Y. T., Li, Y., Lee, E., Bi, X. and Baudry, M. (2013) Calpain2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis. J. Neurosci. 33, 4317-4328. https://doi.org/10.1523/JNEUROSCI.4907-12.2013
- Carloni, S., Buonocore, G. and Balduini, W. (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis. 32, 329-339. https://doi.org/10.1016/j.nbd.2008.07.022
- Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M. and Balduini, W. (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6, 366-377. https://doi.org/10.4161/auto.6.3.11261
- Carmona-Gutierrez, D., Hughes, A. L., Madeo, F. and Ruckenstuhl, C. (2016) The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2-12. https://doi.org/10.1016/j.arr.2016.04.009
- Cheng, X. T., Zhou, B., Lin, M. Y., Cai, Q. and Sheng, Z. H. (2015) Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209, 377-386. https://doi.org/10.1083/jcb.201412046
- Chino, H. and Mizushima, N. (2020) ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 30, 384-398. https://doi.org/10.1016/j.tcb.2020.02.001
- Chung, W. S. and Barres, B. A. (2012) The role of glial cells in synapse elimination. Curr. Opin. Neurobiol. 22, 438-445. https://doi.org/10.1016/j.conb.2011.10.003
- Corrochano, S., Renna, M., Tomas-Zapico, C., Brown, S. D., Lucas, J. J., Rubinsztein, D. C. and Acevedo-Arozena, A. (2012) α-Synuclein levels affect autophagosome numbers in vivo and modulate Huntington's disease pathology. Autophagy 8, 431-432. https://doi.org/10.4161/auto.19259
- Corti, O., Blomgren, K., Poletti, A. and Beart, P. M. (2020) Autophagy in neurodegeneration: new insights underpinning therapy for neurological diseases. J. Neurochem. 154, 354-371. https://doi.org/10.1111/jnc.15002
- Deng, Z., Purtell, K., Lachance, V., Wold, M. S., Chen, S. and Yue, Z. (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 27, 491-504. https://doi.org/10.1016/j.tcb.2017.01.001
- Erecinska, M., Cherian, S. and Silver, I. A. (2004) Energy metabolism in mammalian brain during development. Prog. Neurobiol. 73, 397-445. https://doi.org/10.1016/j.pneurobio.2004.06.003
- Eskelinen, E. L. (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1, 1-10. https://doi.org/10.4161/auto.1.1.1270
- Evans, C. S. and Holzbaur, E. L. F. (2020) Quality control in neurons: mitophagy and other selective autophagy mechanisms. J. Mol. Biol. 432, 240-260. https://doi.org/10.1016/j.jmb.2019.06.031
- Falcon, B., Noad, J., McMahon, H., Randow, F. and Goedert, M. (2018) Galectin-8-mediated selective autophagy protects against seeded tau aggregation. J. Biol. Chem. 293, 2438-2451. https://doi.org/10.1074/jbc.m117.809293
- Farfel-Becker, T., Roney, J. C., Cheng, X. T., Li, S., Cuddy, S. R. and Sheng, Z. H. (2019) Neuronal soma-derived degradative lysosomes are continuously delivered to distal axons to maintain local degradation capacity. Cell Rep. 28, 51-64.e4. https://doi.org/10.1016/j.celrep.2019.06.013
- Farias, G. G., Guardia, C. M., Britt, D. J., Guo, X. and Bonifacino, J. S. (2015) Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13, 1221-1232. https://doi.org/10.1016/j.celrep.2015.09.074
- Fox, J. H., Connor, T., Chopra, V., Dorsey, K., Kama, J. A., Bleckmann, D., Betschart, C., Hoyer, D., Frentzel, S., Difiglia, M., Paganetti, P. and Hersch, S. M. (2010) The mTOR kinase inhibitor everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease. Mol. Neurodegener. 5, 26. https://doi.org/10.1186/1750-1326-5-26
- Furuta, N., Fujita, N., Noda, T., Yoshimori, T. and Amano, A. (2010) Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21, 1001-1010. https://doi.org/10.1091/mbc.E09-08-0693
- Gabryel, B., Kost, A. and Kasprowska, D. (2012) Neuronal autophagy in cerebral ischemia--a potential target for neuroprotective strategies? Pharmacol. Rep. 64, 1-15. https://doi.org/10.1016/S1734-1140(12)70725-9
- Ge, P., Dawson, V. L. and Dawson, T. M. (2020) PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol. Neurodegener. 15, 20. https://doi.org/10.1186/s13024-020-00367-7
- Ginet, V., Puyal, J., Clarke, P. G. and Truttmann, A. C. (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am. J. Pathol. 175, 1962-1974. https://doi.org/10.2353/ajpath.2009.090463
- Ginty, D. D. and Segal, R. A. (2002) Retrograde neurotrophin signaling: Trk-ing along the axon. Curr. Opin. Neurobiol. 12, 268-274. https://doi.org/10.1016/S0959-4388(02)00326-4
- Goo, M. S., Sancho, L., Slepak, N., Boassa, D., Deerinck, T. J., Ellisman, M. H., Bloodgood, B. L. and Patrick, G. N. (2017) Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J. Cell Biol. 216, 2499-2513. https://doi.org/10.1083/jcb.201704068
- Grishchuk, Y., Ginet, V., Truttmann, A. C., Clarke, P. G. and Puyal, J. (2011) Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 7, 1115-1131. https://doi.org/10.4161/auto.7.10.16608
- Grumati, P., Dikic, I. and Stolz, A. (2018) ER-phagy at a glance. J. Cell Sci. 131, jcs217364. https://doi.org/10.1242/jcs.217364
- Haack, T. B., Hogarth, P., Kruer, M. C., Gregory, A., Wieland, T., Schwarzmayr, T., Graf, E., Sanford, L., Meyer, E., Kara, E., Cuno, S. M., Harik, S. I., Dandu, V. H., Nardocci, N., Zorzi, G., Dunaway, T., Tarnopolsky, M., Skinner, S., Frucht, S., Hanspal, E., Schrander-Stumpel, C., Heron, D., Mignot, C., Garavaglia, B., Bhatia, K., Hardy, J., Strom, T. M., Boddaert, N., Houlden, H. H., Kurian, M. A., Meitinger, T., Prokisch, H. and Hayflick, S. J. (2012) Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144-1149. https://doi.org/10.1016/j.ajhg.2012.10.019
- Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H. and Mizushima, N. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889. https://doi.org/10.1038/nature04724
- Hernandez, D., Torres, C. A., Setlik, W., Cebrian, C., Mosharov, E. V., Tang, G., Cheng, H. C., Kholodilov, N., Yarygina, O., Burke, R. E., Gershon, M. and Sulzer, D. (2012) Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74, 277-284. https://doi.org/10.1016/j.neuron.2012.02.020
- Hill, S. E. and Colon-Ramos, D. A. (2020) The journey of the synaptic autophagosome: a cell biological perspective. Neuron 105, 961-973. https://doi.org/10.1016/j.neuron.2020.01.018
- Hoffmann-Conaway, S., Brockmann, M. M., Schneider, K., Annamneedi, A., Rahman, K. A., Bruns, C., Textoris-Taube, K., Trimbuch, T., Smalla, K. H., Rosenmund, C., Gundelfinger, E. D., Garner, C. C. and Montenegro-Venegas, C. (2020) Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice. eLife 9, e56590. https://doi.org/10.7554/elife.56590
- Hoffmann, S., Orlando, M., Andrzejak, E., Bruns, C., Trimbuch, T., Rosenmund, C., Garner, C. C. and Ackermann, F. (2019) LightActivated ROS production induces synaptic autophagy. J. Neurosci. 39, 2163-2183. https://doi.org/10.1523/JNEUROSCI.1317-18.2019
- Hori, I., Otomo, T., Nakashima, M., Miya, F., Negishi, Y., Shiraishi, H., Nonoda, Y., Magara, S., Tohyama, J., Okamoto, N., Kumagai, T., Shimoda, K., Yukitake, Y., Kajikawa, D., Morio, T., Hattori, A., Nakagawa, M., Ando, N., Nishino, I., Kato, M., Tsunoda, T., Saitsu, H., Kanemura, Y., Yamasaki, M., Kosaki, K., Matsumoto, N., Yoshimori, T. and Saitoh, S. (2017) Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Sci. Rep. 7, 3552. https://doi.org/10.1038/s41598-017-02840-8
- Jiang, X., Litkowski, P. E., Taylor, A. A., Lin, Y., Snider, B. J. and Moulder, K. L. (2010) A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing. J. Neurosci. 30, 1798-1809. https://doi.org/10.1523/JNEUROSCI.4965-09.2010
- Joselin, A. P., Hewitt, S. J., Callaghan, S. M., Kim, R. H., Chung, Y. H., Mak, T. W., Shen, J., Slack, R. S. and Park, D. S. (2012) ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum. Mol. Genet. 21, 4888-4903. https://doi.org/10.1093/hmg/dds325
- Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
- Katsumata, K., Nishiyama, J., Inoue, T., Mizushima, N., Takeda, J. and Yuzaki, M. (2010) Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons. Autophagy 6, 378-385. https://doi.org/10.4161/auto.6.3.11262
- Koike, M., Shibata, M., Tadakoshi, M., Gotoh, K., Komatsu, M., Waguri, S., Kawahara, N., Kuida, K., Nagata, S., Kominami, E., Tanaka, K. and Uchiyama, Y. (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 172, 454-469. https://doi.org/10.2353/ajpath.2008.070876
- Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884. https://doi.org/10.1038/nature04723
- Kononenko, N. L., Classen, G. A., Kuijpers, M., Puchkov, D., Maritzen, T., Tempes, A., Malik, A. R., Skalecka, A., Bera, S., Jaworski, J. and Haucke, V. (2017) Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration. Nat. Commun. 8, 14819. https://doi.org/10.1038/ncomms14819
- Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., Endo, T., Fon, E. A., Trempe, J. F., Saeki, Y., Tanaka, K. and Matsuda, N. (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166. https://doi.org/10.1038/nature13392
- Ktistakis, N. T. and Tooze, S. A. (2016) Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26, 624-635. https://doi.org/10.1016/j.tcb.2016.03.006
- Kuijpers, M., Kochlamazashvili, G., Stumpf, A., Puchkov, D., Swaminathan, A., Lucht, M. T., Krause, E., Maritzen, T., Schmitz, D. and Haucke, V. (2020) Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum. Neuron 109, 299-313.
- Kulkarni, A., Chen, J. and Maday, S. (2018) Neuronal autophagy and intercellular regulation of homeostasis in the brain. Curr. Opin. Nuerobiol. 51, 29-36. https://doi.org/10.1016/j.conb.2018.02.008
- Kulkarni, V. V. and Maday, S. (2018) Neuronal endosomes to lysosomes: a journey to the soma. J. Cell Biol. 217, 2977-2979. https://doi.org/10.1083/jcb.201806139
- Kurashige, T., Kuramochi, M., Ohsawa, R., Yamashita, Y., Shioi, G., Morino, H., Kamada, M., Ayaki, T., Ito, H., Sotomaru, Y., Maruyama, H. and Kawakami, H. (2020) Optineurin defects cause TDP43-pathology with autophagic vacuolar formation. Neurobiol. Dis. 148, 105215.
- Kurth, I., Pamminger, T., Hennings, J. C., Soehendra, D., Huebner, A. K., Rotthier, A., Baets, J., Senderek, J., Topaloglu, H., Farrell, S. A., Nurnberg, G., Nurnberg, P., De Jonghe, P., Gal, A., Kaether, C., Timmerman, V. and Hubner, C. A. (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 41, 1179-1181. https://doi.org/10.1038/ng.464
- Lee, K. M., Hwang, S. K. and Lee, J. A. (2013) Neuronal autophagy and neurodevelopmental disorders. Exp. Neurobiol. 22, 133-142. https://doi.org/10.5607/en.2013.22.3.133
- Lee, S., Sato, Y. and Nixon, R. A. (2011) Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy. Autophagy 7, 1562-1563. https://doi.org/10.4161/auto.7.12.17956
- Lee, S. H., Simonetta, A. and Sheng, M. (2004) Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43, 221-236. https://doi.org/10.1016/j.neuron.2004.06.015
- Liang, Y. and Sigrist, S. (2018) Autophagy and proteostasis in the control of synapse aging and disease. Curr. Opin. Nuerobiol. 48, 113-121. https://doi.org/10.1016/j.conb.2017.12.006
- Lim, J., Kim, H. W., Youdim, M. B., Rhyu, I. J., Choe, K. M. and Oh, Y. J. (2011) Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy 7, 51-60. https://doi.org/10.4161/auto.7.1.13909
- Loeffler, D. A. (2019) Influence of normal aging on brain autophagy: a complex scenario. Front. Aging Neurosci. 11, 49. https://doi.org/10.3389/fnagi.2019.00049
- Luningschror, P., Binotti, B., Dombert, B., Heimann, P., Perez-Lara, A., Slotta, C., Thau-Habermann, N., von Collenberg, C. R., Karl, F., Damme, M., Horowitz, A., Maystadt, I., Fuchtbauer, A., Fuchtbauer, E. M., Jablonka, S., Blum, R., Uceyler, N., Petri, S., Kaltschmidt, B., Jahn, R., Kaltschmidt, C. and Sendtner, M. (2017) Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat. Commun. 8, 678. https://doi.org/10.1038/s41467-017-00689-z
- Maday, S. and Holzbaur, E. L. (2014) Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 30, 71-85. https://doi.org/10.1016/j.devcel.2014.06.001
- Maday, S. and Holzbaur, E. L. (2016) Compartment-specific regulation of autophagy in primary neurons. J. Neurosci. 36, 5933-5945. https://doi.org/10.1523/JNEUROSCI.4401-15.2016
- Maiuri, M. C., Zalckvar, E., Kimchi, A. and Kroemer, G. (2007) Selfeating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752. https://doi.org/10.1038/nrm2239
- Martinez-Vicente, M. (2017) Neuronal mitophagy in neurodegenerative diseases. Front. Mol. Neurosci. 10, 64. https://doi.org/10.3389/fnmol.2017.00064
- Mazure, N. M. and Pouyssegur, J. (2010) Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol. 22, 177-180. https://doi.org/10.1016/j.ceb.2009.11.015
- McEwan, D. G. and Dikic, I. (2011) The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol. 21, 195-201. https://doi.org/10.1016/j.tcb.2010.12.006
- Metcalf, D. J., Garcia-Arencibia, M., Hochfeld, W. E. and Rubinsztein, D. C. (2012) Autophagy and misfolded proteins in neurodegeneration. Exp. Neurol. 238, 22-28. https://doi.org/10.1016/j.expneurol.2010.11.003
- Mitra, S., Tsvetkov, A. S. and Finkbeiner, S. (2009) Protein turnover and inclusion body formation. Autophagy 5, 1037-1038. https://doi.org/10.4161/auto.5.7.9291
- Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. and Ohsumi, Y. (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101-1111. https://doi.org/10.1091/mbc.E03-09-0704
- Mollereau, B. and Walter, L. (2019) Is WDR45 the missing link for ER stress-induced autophagy in beta-propeller associated neurodegeneration? Autophagy 15, 2163-2164. https://doi.org/10.1080/15548627.2019.1668229
- Moore, A. S. and Holzbaur, E. L. (2016) Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl. Acad. Sci. U.S.A. 113, E3349-E3358.
- Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., Clark, C. M., McCluskey, L. F., Miller, B. L., Masliah, E., Mackenzie, I. R., Feldman, H., Feiden, W., Kretzschmar, H. A., Trojanowski, J. Q. and Lee, V. M. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133. https://doi.org/10.1126/science.1134108
- Nicholls, D. G. and Budd, S. L. (2000) Mitochondria and neuronal survival. Physiol. Rev. 80, 315-360. https://doi.org/10.1152/physrev.2000.80.1.315
- Nikoletopoulou, V., Papandreou, M. E. and Tavernarakis, N. (2015) Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ. 22, 398-407. https://doi.org/10.1038/cdd.2014.204
- Nikoletopoulou, V., Sidiropoulou, K., Kallergi, E., Dalezios, Y. and Tavernarakis, N. (2017) Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab. 26, 230-242.e5. https://doi.org/10.1016/j.cmet.2017.06.005
- Nixon, R. A., Wegiel, J., Kumar, A., Yu, W. H., Peterhoff, C., Cataldo, A. and Cuervo, A. M. (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113-122. https://doi.org/10.1093/jnen/64.2.113
- Ohba, C., Nabatame, S., Iijima, Y., Nishiyama, K., Tsurusaki, Y., Nakashima, M., Miyake, N., Tanaka, F., Ozono, K., Saitsu, H. and Matsumoto, N. (2014) De novo WDR45 mutation in a patient showing clinically Rett syndrome with childhood iron deposition in brain. J. Hum. Genet. 59, 292-295. https://doi.org/10.1038/jhg.2014.18
- Okerlund, N. D., Schneider, K., Leal-Ortiz, S., Montenegro-Venegas, C., Kim, S. A., Garner, L. C., Waites, C. L., Gundelfinger, E. D., Reimer, R. J. and Garner, C. C. (2017) Bassoon controls presynaptic autophagy through Atg5. Neuron 93, 897-913.e7. https://doi.org/10.1016/j.neuron.2017.01.026
- Padamsey, Z., McGuinness, L., Bardo, S. J., Reinhart, M., Tong, R., Hedegaard, A., Hart, M. L. and Emptage, N. J. (2017) Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron 93, 132-146. https://doi.org/10.1016/j.neuron.2016.11.013
- Philippidou, P., Valdez, G., Akmentin, W., Bowers, W. J., Federoff, H. J. and Halegoua, S. (2011) Trk retrograde signaling requires persistent, Pincher-directed endosomes. Proc. Natl. Acad. Sci. U.S.A. 108, 852-857. https://doi.org/10.1073/pnas.1015981108
- Puyal, J., Vaslin, A., Mottier, V. and Clarke, P. G. (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann. Neurol. 66, 378-389. https://doi.org/10.1002/ana.21714
- Ramesh Babu, J., Lamar Seibenhener, M., Peng, J., Strom, A. L., Kemppainen, R., Cox, N., Zhu, H., Wooten, M. C., Diaz-Meco, M. T., Moscat, J. and Wooten, M. W. (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem. 106, 107-120. https://doi.org/10.1111/j.1471-4159.2008.05340.x
- Rami, A., Langhagen, A. and Steiger, S. (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis. 29, 132-141. https://doi.org/10.1016/j.nbd.2007.08.005
- Reichardt, L. F. (2006) Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1545-1564. https://doi.org/10.1098/rstb.2006.1894
- Richter, B., Sliter, D. A., Herhaus, L., Stolz, A., Wang, C., Beli, P., Zaffagnini, G., Wild, P., Martens, S., Wagner, S. A., Youle, R. J. and Dikic, I. (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. U.S.A. 113, 4039-4044. https://doi.org/10.1073/pnas.1523926113
- Saito, T. and Sadoshima, J. (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ. Res. 116, 1477-1490. https://doi.org/10.1161/CIRCRESAHA.116.303790
- Schwarz, L. A., Hall, B. J. and Patrick, G. N. (2010) Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J. Neurosci. 30, 16718-16729. https://doi.org/10.1523/JNEUROSCI.3686-10.2010
- Sharma, A., Hoeffer, C. A., Takayasu, Y., Miyawaki, T., McBride, S. M., Klann, E. and Zukin, R. S. (2010) Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30, 694-702. https://doi.org/10.1523/JNEUROSCI.3696-09.2010
- Shehata, M., Matsumura, H., Okubo-Suzuki, R., Ohkawa, N. and Inokuchi, K. (2012) Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci. 32, 10413-10422. https://doi.org/10.1523/JNEUROSCI.4533-11.2012
- Shen, W. and Ganetzky, B. (2009) Autophagy promotes synapse development in Drosophila. J. Cell Biol. 187, 71-79. https://doi.org/10.1083/jcb.200907109
- Sheng, R. and Qin, Z. H. (2015) The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol. Sin. 36, 411-420. https://doi.org/10.1038/aps.2014.151
- Shibata, M., Lu, T., Furuya, T., Degterev, A., Mizushima, N., Yoshimori, T., MacDonald, M., Yankner, B. and Yuan, J. (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474-14485. https://doi.org/10.1074/jbc.M600364200
- Smith, E. D., Prieto, G. A., Tong, L., Sears-Kraxberger, I., Rice, J. D., Steward, O. and Cotman, C. W. (2014) Rapamycin and interleukin1beta impair brain-derived neurotrophic factor-dependent neuron survival by modulating autophagy. J. Biol. Chem. 289, 20615-20629. https://doi.org/10.1074/jbc.M114.568659
- Son, J. H., Shim, J. H., Kim, K. H., Ha, J. Y. and Han, J. Y. (2012) Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med. 44, 89-98. https://doi.org/10.3858/emm.2012.44.2.031
- Song, A. H., Wang, D., Chen, G., Li, Y., Luo, J., Duan, S. and Poo, M. M. (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136, 1148-1160. https://doi.org/10.1016/j.cell.2009.01.016
- Soukup, S. F., Kuenen, S., Vanhauwaert, R., Manetsberger, J., Hernandez-Diaz, S., Swerts, J., Schoovaerts, N., Vilain, S., Gounko, N. V., Vints, K., Geens, A., De Strooper, B. and Verstreken, P. (2016) A LRRK2-dependent endophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals. Neuron 92, 829-844. https://doi.org/10.1016/j.neuron.2016.09.037
- Stavoe, A. K., Hill, S. E., Hall, D. H. and Colon-Ramos, D. A. (2016) KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev. Cell 38, 171-185. https://doi.org/10.1016/j.devcel.2016.06.012
- Stephan, A. H., Barres, B. A. and Stevens, B. (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369-389. https://doi.org/10.1146/annurev-neuro-061010-113810
- Suzuki, K., Kubota, Y., Sekito, T. and Ohsumi, Y. (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209-218. https://doi.org/10.1111/j.1365-2443.2007.01050.x
- Tang, G., Gudsnuk, K., Kuo, S. H., Cotrina, M. L., Rosoklija, G., Sosunov, A., Sonders, M. S., Kanter, E., Castagna, C., Yamamoto, A., Yue, Z., Arancio, O., Peterson, B. S., Champagne, F., Dwork, A. J., Goldman, J. and Sulzer, D. (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131-1143. https://doi.org/10.1016/j.neuron.2014.07.040
- Tsuyuki, S., Takabayashi, M., Kawazu, M., Kudo, K., Watanabe, A., Nagata, Y., Kusama, Y. and Yoshida, K. (2014) Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy 10, 497-513. https://doi.org/10.4161/auto.27419
- Tsvetkov, A. S., Miller, J., Arrasate, M., Wong, J. S., Pleiss, M. A. and Finkbeiner, S. (2010) A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl. Acad. Sci. U.S.A. 107, 16982-16987. https://doi.org/10.1073/pnas.1004498107
- Turco, E., Witt, M., Abert, C., Bock-Bierbaum, T., Su, M. Y., Trapannone, R., Sztacho, M., Danieli, A., Shi, X., Zaffagnini, G., Gamper, A., Schuschnig, M., Fracchiolla, D., Bernklau, D., Romanov, J., Hartl, M., Hurley, J. H., Daumke, O. and Martens, S. (2019) FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74, 330-346.e11. https://doi.org/10.1016/j.molcel.2019.01.035
- Van Laar, V. S., Roy, N., Liu, A., Rajprohat, S., Arnold, B., Dukes, A. A., Holbein, C. D. and Berman, S. B. (2015) Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol. Dis. 74, 180-193. https://doi.org/10.1016/j.nbd.2014.11.015
- Vanhauwaert, R., Kuenen, S., Masius, R., Bademosi, A., Manetsberger, J., Schoovaerts, N., Bounti, L., Gontcharenko, S., Swerts, J., Vilain, S., Picillo, M., Barone, P., Munshi, S. T., de Vrij, F. M., Kushner, S. A., Gounko, N. V., Mandemakers, W., Bonifati, V., Meunier, F. A., Soukup, S. F. and Verstreken, P. (2017) The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J. 36, 1392-1411. https://doi.org/10.15252/embj.201695773
- Vijayan, V. and Verstreken, P. (2017) Autophagy in the presynaptic compartment in health and disease. J. Cell Biol. 216, 1895-1906. https://doi.org/10.1083/jcb.201611113
- Wallings, R. L., Humble, S. W., Ward, M. E. and Wade-Martins, R. (2019) Lysosomal dysfunction at the centre of parkinson's disease and frontotemporal dementia/amyotrophic lateral sclerosis. Trends Neurosci. 42, 899-912. https://doi.org/10.1016/j.tins.2019.10.002
- Wan, H., Wang, Q., Chen, X., Zeng, Q., Shao, Y., Fang, H., Liao, X., Li, H. S., Liu, M. G., Xu, T. L., Diao, M., Li, D., Meng, B., Tang, B., Zhang, Z. and Liao, L. (2020) WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death. Autophagy 16, 531-547. https://doi.org/10.1080/15548627.2019.1630224
- Wang, D. B., Kinoshita, Y., Kinoshita, C., Uo, T., Sopher, B. L., Cudaback, E., Keene, C. D., Bilousova, T., Gylys, K., Case, A., Jayadev, S., Wang, H. G., Garden, G. A. and Morrison, R. S. (2015a) Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain 138, 2005-2019. https://doi.org/10.1093/brain/awv128
- Wang, M. M., Feng, Y. S., Yang, S. D., Xing, Y., Zhang, J., Dong, F. and Zhang, F. (2019) The relationship between autophagy and brain plasticity in neurological diseases. Front. Cell. Neurosci. 13, 228. https://doi.org/10.3389/fncel.2019.00228
- Wang, T., Martin, S., Papadopulos, A., Harper, C. B., Mavlyutov, T. A., Niranjan, D., Glass, N. R., Cooper-White, J. J., Sibarita, J. B., Choquet, D., Davletov, B. and Meunier, F. A. (2015b) Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J. Neurosci. 35, 6179-6194. https://doi.org/10.1523/JNEUROSCI.3757-14.2015
- Watanabe, S., Mamer, L. E., Raychaudhuri, S., Luvsanjav, D., Eisen, J., Trimbuch, T., Sohl-Kielczynski, B., Fenske, P., Milosevic, I., Rosenmund, C. and Jorgensen, E. M. (2018) Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. Neuron 98, 1184-1197.e6. https://doi.org/10.1016/j.neuron.2018.06.005
- Wen, Y. D., Sheng, R., Zhang, L. S., Han, R., Zhang, X., Zhang, X. D., Han, F., Fukunaga, K. and Qin, Z. H. (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4, 762-769. https://doi.org/10.4161/auto.6412
- Wild, P., McEwan, D. G. and Dikic, I. (2014) The LC3 interactome at a glance. J. Cell Sci. 127, 3-9. https://doi.org/10.1242/jcs.140426
- Williams, A., Jahreiss, L., Sarkar, S., Saiki, S., Menzies, F. M., Ravikumar, B. and Rubinsztein, D. C. (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76, 89-101. https://doi.org/10.1016/S0070-2153(06)76003-3
- Winden, K. D., Ebrahimi-Fakhari, D. and Sahin, M. (2018) Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41, 1-23. https://doi.org/10.1146/annurev-neuro-080317-061747
- Wong, Y. C. and Holzbaur, E. L. (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagythat is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. U.S.A. 111, E4439- E4448.
- Wurzer, B., Zaffagnini, G., Fracchiolla, D., Turco, E., Abert, C., Romanov, J. and Martens, S. (2015) Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. eLife 4, e08941. https://doi.org/10.7554/elife.08941
- Xie, Z. and Klionsky, D. J. (2007) Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102-1109.
- Yamamoto, A. and Yue, Z. (2014) Autophagy and its normal and pathogenic states in the brain. Annu. Rev. Neurosci. 37, 55-78. https://doi.org/10.1146/annurev-neuro-071013-014149
- Yan, J., Porch, M. W., Court-Vazquez, B., Bennett, M. V. L. and Zukin, R. S. (2018) Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc. Natl. Acad. Sci. U.S.A. 115, E9707-E9716.
- Yap, C. C., Digilio, L., McMahon, L. P., Garcia, A. D. R. and Winckler, B. (2018) Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J. Cell Biol. 217, 3141-3159. https://doi.org/10.1083/jcb.201711039
- Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. and Tashiro, Y. (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707-17712. https://doi.org/10.1016/S0021-9258(19)47429-2
- Young, J. E., Martinez, R. A. and La Spada, A. R. (2009) Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J. Biol. Chem. 284, 2363-2373. https://doi.org/10.1074/jbc.M806088200
- Zatyka, M., Sarkar, S. and Barrett, T. (2020) Autophagy in rare (non-lysosomal) neurodegenerative diseases. J. Mol. Biol. 432, 2735-2753. https://doi.org/10.1016/j.jmb.2020.02.012
- Zhu, C., Wang, X., Xu, F., Bahr, B. A., Shibata, M., Uchiyama, Y., Hagberg, H. and Blomgren, K. (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 12, 162-176. https://doi.org/10.1038/sj.cdd.4401545
- Zhu, Z., Yang, C., Iyaswamy, A., Krishnamoorthi, S., Sreenivasmurthy, S. G., Liu, J., Wang, Z., Tong, B. C., Song, J., Lu, J., Cheung, K. H. and Li, M. (2019) Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease. Int. J. Mol. Sci. 20, 728. https://doi.org/10.3390/ijms20030728
- Zolkipli-Cunningham, Z. and Falk, M. J. (2017) Clinical effects of chemical exposures on mitochondrial function. Toxicology 391, 90-99. https://doi.org/10.1016/j.tox.2017.07.009
Cited by
- The Function of KDEL Receptors as UPR Genes in Disease vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115436
- Curcumin induces autophagic cell death in human thyroid cancer cells vol.78, 2022, https://doi.org/10.1016/j.tiv.2021.105254