DOI QR코드

DOI QR Code

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun (Natural Product Research Center, Korea Institute of Science and Technology) ;
  • Park, Jeoung Yun (Natural Product Research Center, Korea Institute of Science and Technology) ;
  • Zhao, Dong (Natural Product Research Center, Korea Institute of Science and Technology) ;
  • Kwon, Hak Cheol (Natural Product Informatics Research Center, Korea Institute of Science and Technology) ;
  • Yang, Hyun Ok (Natural Product Research Center, Korea Institute of Science and Technology)
  • Received : 2021.01.06
  • Accepted : 2021.06.07
  • Published : 2021.11.01

Abstract

An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Keywords

Acknowledgement

This work was funded and supported by the Bio-Synergy Research Project (NRF-2012M3A9C4048793) and the Bio & Medical Technology Development Program (NRF-2015M3A9A5030735) of the Ministry of Science, ICT, and Future Planning through the National Research Foundation of the Republic of Korea to HOY. This work also was supported by Korea Institute of Science and Technology (KIST) Institutional Program (2Z05640).

References

  1. Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A. and Johansenet, T. (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 452, 181-197. https://doi.org/10.1016/S0076-6879(08)03612-4
  2. Choi, D. Y., Lee, M. K. and Hong, J. T. (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol. Dis. 49, 159-168. https://doi.org/10.1016/j.nbd.2012.08.001
  3. Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W. and Kordower, J. H. (2009) Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385-398. https://doi.org/10.1016/j.nbd.2009.05.023
  4. Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E. and Lansbury, P. T., Jr. (2000) Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann. N. Y. Acad. Sci. 920, 42-45. https://doi.org/10.1111/j.1749-6632.2000.tb06903.x
  5. Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  6. Davie, C. A. (2008) A review of Parkinson's disease. Br. Med. Bull. 86, 109-127. https://doi.org/10.1093/bmb/ldn013
  7. Dehay, B., Bove, J., Rodriguez-Muela, N., Perier, C., Recasens, A., Boya, P. and Vila, M. (2010) Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535-12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010
  8. Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S. R., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M. and Shaw, R. J. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461. https://doi.org/10.1126/science.1196371
  9. Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S. and Jiang, X. (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305. https://doi.org/10.1074/jbc.M900573200
  10. Ghosh, R., Gilda, J. E. and Gomes, A. V. (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev. Proteomics 11, 549-560. https://doi.org/10.1586/14789450.2014.939635
  11. Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  12. He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
  13. Hu, X., Song, Q., Li, X., Li, D. D., Zhang, Q., Meng, W. H. and Zhao, Q. C. (2017a) Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson's model through apoptosis inhibition and autophagy enhancement. Neuropharmacology 117, 352-363. https://doi.org/10.1016/j.neuropharm.2017.02.022
  14. Hu, X. X., Shi, S., Wang, H., Yu, X., Wang, Q., Jiang, S., Ju, D., Ye, L. and Feng, M. (2017b) Blocking autophagy improves the anti-tumor activity of afatinib in lung adenocarcinoma with activating EGFR mutations in vitro and in vivo. Sci. Rep. 7, 4559. https://doi.org/10.1038/s41598-017-04258-8
  15. Hyun, S.-W., Kim, J., Jo, K., Kim, J. S. and Kim, C. S. (2018) Aster koraiensis extract improves impaired skin wound healing during hyperglycemia. Integr. Med. Res. 7, 351-357. https://doi.org/10.1016/j.imr.2018.09.001
  16. Inoki, K., Zhu, T. and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. https://doi.org/10.1016/S0092-8674(03)00929-2
  17. Ito, S., Koshikawa, N., Mochizuki, S. and Takenaga, K. (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int. J. Oncol. 31, 261-268.
  18. Janhom, P. and Dharmasaroja, P. (2015) Neuroprotective effects of alpha-mangostin on MPP(+)-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. J. Toxicol. 2015, 919058.
  19. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M. and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003. https://doi.org/10.1091/mbc.E08-12-1249
  20. Kim, J., Kundu, M., Viollet, B. and Guan, K. L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141. https://doi.org/10.1038/ncb2152
  21. Kim, J., Lee, Y. M., Jung, W., Park, S. B., Kim, C. S. and Kim, J. S. (2018) Aster koraiensis extract and chlorogenic acid inhibit retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Evid. Based Complement. Alternat. Med. 2018, 6402650.
  22. Klaidman, L .K., Adams, J. D., Jr., Leung, A. C., Kim, S. S. and Cadenas, E. (1993) Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic. Biol. Med. 15, 169-179. https://doi.org/10.1016/0891-5849(93)90056-Z
  23. Kostrzewa, R. M. (2014) Handbook of Neurotoxicity. Springer, New York.
  24. Kupsch, A., Sautter, J., Gotz, M. E., Breithaupt, W., Schwarz, J., Youdim, M. B., Riederer, P., Gerlach, M. and Oertel, W. H. (2001) Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J. Neural Transm. (Vienna) 108, 985-1009. https://doi.org/10.1007/s007020170018
  25. Kwon, J., Ko, K., Zhang, L., Zhao, D., Yang, H. O. and Kwon, H. C. (2019) An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 24, 4489. https://doi.org/10.3390/molecules24244489
  26. Liang, J. Q., Wang, L., He, J. C. and Hua, X. (2016) Verbascoside promotes the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Neural Regen. Res. 11, 101-106. https://doi.org/10.4103/1673-5374.175053
  27. Le, W. (2020) Autophagy: Biologyand Disease- Clinical Science. Springer, Singapore.
  28. Mallajosyula, J. K., Kaur, D., Chinta, S. J., Rajagopalan, S., Rane, A., Nicholls, D. G., Di Monte, D. A., Macarthur, H. and Andersen, J. K. (2008) MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology. PLoS ONE 3, e1616. https://doi.org/10.1371/journal.pone.0001616
  29. Meley, D., Bauvy, C., Houben-Weerts, J. H. P. M., Dubbelhuis, P. F., Helmond, M. T. J., Codogno, P. and Meijer, A. J. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879. https://doi.org/10.1074/jbc.M605488200
  30. Moscat, J. and Diaz-Meco, M. T. (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001-1004. https://doi.org/10.1016/j.cell.2009.05.023
  31. Mythri, R. B., Harish, G. and Bharath, M. M. (2012) Therapeutic potential of natural products in Parkinson's disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 6, 181-200. https://doi.org/10.2174/187221412802481793
  32. Nashatizadeh, M. M., Lyons, K. E. and Pahwa, R. (2009) A review of ropinirole prolonged release in Parkinson's disease. Clin. Interv. Aging 4, 179-186.
  33. Noda, T. and Ohsumi, Y. (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963-3966. https://doi.org/10.1074/jbc.273.7.3963
  34. Pattingre, S., Bauvy, C. and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674. https://doi.org/10.1074/jbc.M210998200
  35. Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E. and Lang, A. E. (2017) Parkinson disease. Nat. Rev. Dis. Primers 3, 17013. https://doi.org/10.1038/nrdp.2017.13
  36. Prabakaran, M., Kim, S. H., Mugila, N., Hemapriya, V., Parameswari, K., Chitra, S. and Chunga, I. M. (2017) Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J. Ind. Eng. Chem. 52, 235-242. https://doi.org/10.1016/j.jiec.2017.03.052
  37. Ramsay, R. R. and Singer, T. P. (1986) Energy-dependent uptake of Nmethyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J. Biol. Chem. 261, 7585-7587. https://doi.org/10.1016/S0021-9258(19)57434-8
  38. Ransom, B. R., Kunis, D. M., Irwin, I. and Langston, J. W. (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75, 323-328. https://doi.org/10.1016/0304-3940(87)90543-X
  39. Sarkar, S. (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 41, 1103-1130. https://doi.org/10.1042/BST20130134
  40. Tabrez, S., Jabir, N. R., Shakil, S., Greig, N. H., Alam, Q., Abuzenadah, A. M., Damanhouri, G. A. and Kamal, M. A. (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson's disease. CNS Neurol. Disord. Drug Targets 11, 395-409. https://doi.org/10.2174/187152712800792785
  41. Taylor, T. N., Greene, J. G. and Miller, G. W. (2010) Behavioral phenotyping of mouse models of Parkinson's disease. Behav. Brain Res. 211, 1-10. https://doi.org/10.1016/j.bbr.2010.03.004
  42. Vogiatzi, T., Xilouri, M., Vekrellis, K. and Stefanis, L. (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542-23556. https://doi.org/10.1074/jbc.M801992200
  43. Wang, J., Whiteman, M. W., Lian, H., Wang, G., Singh, A., Huang, D. and Denmark, T. (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 284, 21412-21424. https://doi.org/10.1074/jbc.M109.026013
  44. Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P. and Shen, H. M. (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861. https://doi.org/10.1074/jbc.M109.080796
  45. Yang, Y. H., Chen, K., Li, B., Chen, J. W., Zheng, X. F., Wang, Y. R., Jiang, S. D. and Jiang, L. S. (2013) Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway. Apoptosis 18, 1363-1375. https://doi.org/10.1007/s10495-013-0867-x
  46. Yoshii, S. R. and Mizushima, N. (2017) Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865. https://doi.org/10.3390/ijms18091865
  47. Zhang, X. J., Chen, S., Huang, K. X. and Le, W. (2013) Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34, 595-599. https://doi.org/10.1038/aps.2012.184
  48. Zhu, W., Gao, Y., Wan, J., Lan, X., Han, X., Zhu, S., Zang, W., Chen, X., Ziai, W., Hanley, D. F., Russo, S. J., Jorge, R. E. and Wang, J. (2018) Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav. Immun. 69, 568-581. https://doi.org/10.1016/j.bbi.2018.02.004