Acknowledgement
This work was funded and supported by the Bio-Synergy Research Project (NRF-2012M3A9C4048793) and the Bio & Medical Technology Development Program (NRF-2015M3A9A5030735) of the Ministry of Science, ICT, and Future Planning through the National Research Foundation of the Republic of Korea to HOY. This work also was supported by Korea Institute of Science and Technology (KIST) Institutional Program (2Z05640).
References
- Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A. and Johansenet, T. (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 452, 181-197. https://doi.org/10.1016/S0076-6879(08)03612-4
- Choi, D. Y., Lee, M. K. and Hong, J. T. (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol. Dis. 49, 159-168. https://doi.org/10.1016/j.nbd.2012.08.001
- Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W. and Kordower, J. H. (2009) Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385-398. https://doi.org/10.1016/j.nbd.2009.05.023
- Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E. and Lansbury, P. T., Jr. (2000) Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann. N. Y. Acad. Sci. 920, 42-45. https://doi.org/10.1111/j.1749-6632.2000.tb06903.x
- Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
- Davie, C. A. (2008) A review of Parkinson's disease. Br. Med. Bull. 86, 109-127. https://doi.org/10.1093/bmb/ldn013
- Dehay, B., Bove, J., Rodriguez-Muela, N., Perier, C., Recasens, A., Boya, P. and Vila, M. (2010) Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535-12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010
- Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S. R., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M. and Shaw, R. J. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461. https://doi.org/10.1126/science.1196371
- Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S. and Jiang, X. (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305. https://doi.org/10.1074/jbc.M900573200
- Ghosh, R., Gilda, J. E. and Gomes, A. V. (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev. Proteomics 11, 549-560. https://doi.org/10.1586/14789450.2014.939635
- Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
- He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
- Hu, X., Song, Q., Li, X., Li, D. D., Zhang, Q., Meng, W. H. and Zhao, Q. C. (2017a) Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson's model through apoptosis inhibition and autophagy enhancement. Neuropharmacology 117, 352-363. https://doi.org/10.1016/j.neuropharm.2017.02.022
- Hu, X. X., Shi, S., Wang, H., Yu, X., Wang, Q., Jiang, S., Ju, D., Ye, L. and Feng, M. (2017b) Blocking autophagy improves the anti-tumor activity of afatinib in lung adenocarcinoma with activating EGFR mutations in vitro and in vivo. Sci. Rep. 7, 4559. https://doi.org/10.1038/s41598-017-04258-8
- Hyun, S.-W., Kim, J., Jo, K., Kim, J. S. and Kim, C. S. (2018) Aster koraiensis extract improves impaired skin wound healing during hyperglycemia. Integr. Med. Res. 7, 351-357. https://doi.org/10.1016/j.imr.2018.09.001
- Inoki, K., Zhu, T. and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. https://doi.org/10.1016/S0092-8674(03)00929-2
- Ito, S., Koshikawa, N., Mochizuki, S. and Takenaga, K. (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int. J. Oncol. 31, 261-268.
- Janhom, P. and Dharmasaroja, P. (2015) Neuroprotective effects of alpha-mangostin on MPP(+)-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. J. Toxicol. 2015, 919058.
- Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M. and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003. https://doi.org/10.1091/mbc.E08-12-1249
- Kim, J., Kundu, M., Viollet, B. and Guan, K. L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141. https://doi.org/10.1038/ncb2152
- Kim, J., Lee, Y. M., Jung, W., Park, S. B., Kim, C. S. and Kim, J. S. (2018) Aster koraiensis extract and chlorogenic acid inhibit retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Evid. Based Complement. Alternat. Med. 2018, 6402650.
- Klaidman, L .K., Adams, J. D., Jr., Leung, A. C., Kim, S. S. and Cadenas, E. (1993) Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic. Biol. Med. 15, 169-179. https://doi.org/10.1016/0891-5849(93)90056-Z
- Kostrzewa, R. M. (2014) Handbook of Neurotoxicity. Springer, New York.
- Kupsch, A., Sautter, J., Gotz, M. E., Breithaupt, W., Schwarz, J., Youdim, M. B., Riederer, P., Gerlach, M. and Oertel, W. H. (2001) Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J. Neural Transm. (Vienna) 108, 985-1009. https://doi.org/10.1007/s007020170018
- Kwon, J., Ko, K., Zhang, L., Zhao, D., Yang, H. O. and Kwon, H. C. (2019) An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 24, 4489. https://doi.org/10.3390/molecules24244489
- Liang, J. Q., Wang, L., He, J. C. and Hua, X. (2016) Verbascoside promotes the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Neural Regen. Res. 11, 101-106. https://doi.org/10.4103/1673-5374.175053
- Le, W. (2020) Autophagy: Biologyand Disease- Clinical Science. Springer, Singapore.
- Mallajosyula, J. K., Kaur, D., Chinta, S. J., Rajagopalan, S., Rane, A., Nicholls, D. G., Di Monte, D. A., Macarthur, H. and Andersen, J. K. (2008) MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology. PLoS ONE 3, e1616. https://doi.org/10.1371/journal.pone.0001616
- Meley, D., Bauvy, C., Houben-Weerts, J. H. P. M., Dubbelhuis, P. F., Helmond, M. T. J., Codogno, P. and Meijer, A. J. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879. https://doi.org/10.1074/jbc.M605488200
- Moscat, J. and Diaz-Meco, M. T. (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001-1004. https://doi.org/10.1016/j.cell.2009.05.023
- Mythri, R. B., Harish, G. and Bharath, M. M. (2012) Therapeutic potential of natural products in Parkinson's disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 6, 181-200. https://doi.org/10.2174/187221412802481793
- Nashatizadeh, M. M., Lyons, K. E. and Pahwa, R. (2009) A review of ropinirole prolonged release in Parkinson's disease. Clin. Interv. Aging 4, 179-186.
- Noda, T. and Ohsumi, Y. (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963-3966. https://doi.org/10.1074/jbc.273.7.3963
- Pattingre, S., Bauvy, C. and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674. https://doi.org/10.1074/jbc.M210998200
- Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E. and Lang, A. E. (2017) Parkinson disease. Nat. Rev. Dis. Primers 3, 17013. https://doi.org/10.1038/nrdp.2017.13
- Prabakaran, M., Kim, S. H., Mugila, N., Hemapriya, V., Parameswari, K., Chitra, S. and Chunga, I. M. (2017) Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J. Ind. Eng. Chem. 52, 235-242. https://doi.org/10.1016/j.jiec.2017.03.052
- Ramsay, R. R. and Singer, T. P. (1986) Energy-dependent uptake of Nmethyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J. Biol. Chem. 261, 7585-7587. https://doi.org/10.1016/S0021-9258(19)57434-8
- Ransom, B. R., Kunis, D. M., Irwin, I. and Langston, J. W. (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75, 323-328. https://doi.org/10.1016/0304-3940(87)90543-X
- Sarkar, S. (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 41, 1103-1130. https://doi.org/10.1042/BST20130134
- Tabrez, S., Jabir, N. R., Shakil, S., Greig, N. H., Alam, Q., Abuzenadah, A. M., Damanhouri, G. A. and Kamal, M. A. (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson's disease. CNS Neurol. Disord. Drug Targets 11, 395-409. https://doi.org/10.2174/187152712800792785
- Taylor, T. N., Greene, J. G. and Miller, G. W. (2010) Behavioral phenotyping of mouse models of Parkinson's disease. Behav. Brain Res. 211, 1-10. https://doi.org/10.1016/j.bbr.2010.03.004
- Vogiatzi, T., Xilouri, M., Vekrellis, K. and Stefanis, L. (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542-23556. https://doi.org/10.1074/jbc.M801992200
- Wang, J., Whiteman, M. W., Lian, H., Wang, G., Singh, A., Huang, D. and Denmark, T. (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 284, 21412-21424. https://doi.org/10.1074/jbc.M109.026013
- Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P. and Shen, H. M. (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861. https://doi.org/10.1074/jbc.M109.080796
- Yang, Y. H., Chen, K., Li, B., Chen, J. W., Zheng, X. F., Wang, Y. R., Jiang, S. D. and Jiang, L. S. (2013) Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway. Apoptosis 18, 1363-1375. https://doi.org/10.1007/s10495-013-0867-x
- Yoshii, S. R. and Mizushima, N. (2017) Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865. https://doi.org/10.3390/ijms18091865
- Zhang, X. J., Chen, S., Huang, K. X. and Le, W. (2013) Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34, 595-599. https://doi.org/10.1038/aps.2012.184
- Zhu, W., Gao, Y., Wan, J., Lan, X., Han, X., Zhu, S., Zang, W., Chen, X., Ziai, W., Hanley, D. F., Russo, S. J., Jorge, R. E. and Wang, J. (2018) Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav. Immun. 69, 568-581. https://doi.org/10.1016/j.bbi.2018.02.004