DOI QR코드

DOI QR Code

Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete

  • Amin, Mohamed (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University) ;
  • Zeyad, Abdullah M. (Civil Engineering Department, Jazan University) ;
  • Tayeh, Bassam A. (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Agwa, Ibrahim Saad (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University)
  • Received : 2021.01.23
  • Accepted : 2021.08.06
  • Published : 2021.10.25

Abstract

Heavyweight geopolymer concrete (HWGC) is a new concrete type that combines the benefits of geopolymer concrete (GC) and heavyweight concrete. HWGC can be used to produce particular properties such as high radiation shielding, and mass concrete elements. HWGC based on fly ash and ground granulated blast furnace slag, using electric arc furnace steel slag (EAFSS), barite and ilmenite coarse aggregates can substantially have higher specific gravities than concrete made with crushed dolomite. In the experimental work carried out on four main groups, 13 GC mixes are prepared by using heavyweight coarse aggregates (HWCAs) at volume ratios of 0%, 25%, 50%, 75% and 100%. Fresh and mechanical properties, compressive and tensile strengths, and influence of high temperature on radiation are investigated for specimens subjected to high temperatures of up to 900℃ for 1, 2 and 3 hours. Moreover, the internal structure of geopolymer is analyzed using scanning electron microscope and energy-dispersive X-ray. Results show a good effect of HWCAs on the properties, radiation shielding and unit weight. The density of heavyweight geopolymer mixes ranges between 2,415 and 3,480 kg/m3, and HWCA ratios contribute to an increase in all properties of GC mixtures using up to 75% of NWCAs. Heavier coarse aggregate of ilmenite dampens the effect of higher temperatures on GC strength compared with lighter aggregates. In addition, replacing crushed dolomite with heavyweight aggregates of EAFSS, barite and ilmenite increases the attenuation rate to 27%, 21% and 13%, respectively. This finding confirms that the type of aggregate used in the production of GC is important for reducing the permeability of X-ray.

Keywords

References

  1. Abdullah, M., Kamarudin, H., Bnhussain, M., Khairul Nizar, I., Rafiza, A.R. and Zarina, Y. (2011), "The relationship of NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio, and curing temperature to the strength of fly ash-based geopolymer", Adv. Mater. Res., 328, 1475-1482. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1475.
  2. Alaloul, W.S., Musarat, M.A., Haruna, S., Tayeh, B. and Norizan, M.N.B. (2021), "Chemical attack on concrete containing a high volume of crumb rubber as a partial replacement to fine aggregate in engineered cementitious composite (ECC)", Can. J. Civil Eng., https://doi.org/10.1139/cjce-2020-0343.
  3. Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete", J. Clean. Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073.
  4. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021a), "Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates", Constr. Build. Mater., 302, 124196. https://doi.org/10.1016/j.conbuildmat.2021.124196.
  5. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021b), "Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate", Constr. Build. Mater., 299, 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243.
  6. Amran, Y.M., Alyousef, R., Alabduljabbar, H. and El-Zeadani, M. (2020), "Clean production and properties of geopolymer concrete; A review", J. Clean. Prod., 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679.
  7. Andrews-Phaedonos, F. (2014), "Specification and use of geopolymer concrete", Austroads Bridge Conference, Sydney, New South Wales, Australia.
  8. Aslani, F. and Asif, Z. (2019), "Properties of ambient-cured normal and heavyweight geopolymer concrete exposed to high temperatures", Mater., 12(5), 740. https://doi.org/10.3390/ma12050740.
  9. Assi, L.N., Deaver, E.E. and Ziehl, P. (2018), "Using sucrose for improvement of initial and final setting times of silica fume-based activating solution of fly ash geopolymer concrete", Constr. Build. Mater., 191, 47-55. https://doi.org/10.1016/j.conbuildmat.2018.09.199.
  10. ASTM (2015), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM C 143/C 143M 100 Barr Harbor, West Conshohocken.
  11. Bakharev, T. (2006), "Heat resistance of geopolymer materials prepared using class F fly ash", J. Aust. Ceram Soc., 42, 34-44.
  12. Basyigit, C., Akkurt, I., Kilincarslan, S. and Beycioglu, A. (2010), "Prediction of compressive strength of heavyweight concrete by ANN and FL models", Neur. Comput. Appl., 19(4), 507-513. https://doi.org/10.1007/s00521-009-0292-9.
  13. Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A.R., Duxson, P. and van Deventer, J.S. (2013), "Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation", Cement Concrete Res., 53, 127-144. https://doi.org/10.1016/j.cemconres.2013.06.007.
  14. Blaszczynski, T. and Krol, M. (2015), "Usage of green concrete technology in civil engineering", Procedia Eng., 122, 296-301. https://doi.org/10.1016/j.proeng.2015.10.039.
  15. Bouaissi, A., Li, L.Y., Abdullah, M.M.A.B., Bui, Q.B.J.C. and Materials, B. (2019), "Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete", Constr. Build. Mater., 210, 198-209. https://doi.org/10.1016/j.conbuildmat.2019.03.202.
  16. Britto, X.J. and Muthuraj, M.P. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671.
  17. Buckley, C., van Riessen, A. and O'Connor, B. (2004), "Influence of aggregate on the microstructure of geopolymer", Curtin University.
  18. Cheema, D., Roads, M. and Australia, W. (2012), "Low calcium fly ash geopolymer concrete-a promising sustainable alternative for rigid concrete road furniture", 25th ARRB Conference-Shaping the Future: Linking Policy, Research and Outcomes, Perth, Australia.
  19. Cheng, T.W. and Chiu, J. (2003), "Fire-resistant geopolymer produced by granulated blast furnace slag", Miner. Eng., 16(3), 205-210. https://doi.org/10.1016/S0892-6875(03)00008-6.
  20. Chindaprasirt, P., Thaiwitcharoen, S., Kaewpirom, S. and Rattanasak, U. (2013a), "Controlling ettringite formation in FBC fly ash geopolymer concrete", Cement Concrete Compos., 41, 24-28. https://doi.org/10.1016/j.cemconcomp.2013.04.009.
  21. Chindaprasirt, P., Thaiwitcharoen, S., Kaewpirom, S., Rattanasak, U.J.C. and Composites, C. (2013b), "Controlling ettringite formation in FBC fly ash geopolymer concrete", Cement Concrete Compos., 41, 24-28. https://doi.org/10.1016/j.cemconcomp.2013.04.009.
  22. Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001.
  23. EN, B.S. (2000), 206-1 Concrete: Part 1-Specification, Performance, Production and Conformity, British Standards Institution.
  24. Erk, K.A. and Bose, B. (2018), "Using polymer science to improve concrete: superabsorbent polymer hydrogels in highly alkaline environments", Gels and Other Soft Amorphous Solids, 333-356.
  25. Esen, Y. and Dogan, Z.M. (2018), "Investigation of usability of limonite aggregate in heavy-weight concrete production", Prog. Nucl. Energy, 105, 185-193. https://doi.org/10.1016/j.pnucene.2018.01.011.
  26. Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021), "The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties", Constr. Build. Mater., 290, 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279.
  27. Faris, M.A., Abdullah, M., Sandu, A.V., Ismail, K.N., Moga, L.M., Neculai, O. and Muniandy, R. (2017), "Assessment of alkali activated geopolymer binders as an alternative of portlant cement", Mater. Plast., 54(1), 145-154. https://doi.org/10.37358/MP.17.1.4806
  28. Ghosh, K. and Ghosh, P. (2012), "Effect Of Na2O/Al2O3, SiO2/Al2O3 and W/B ratio on setting time and workability of flyash based geopolymer", Int. J. Eng. Res. Appl., 2(4), 2142-2147.
  29. Gopalakrishnan, R. and Chinnaraju, K. (2019), "Durability of ambient cured alumina silicate concrete based on slag/fly ash blends against sulfate environment", Constr. Build. Mater., 204, 70-83. https://doi.org/10.1016/j.conbuildmat.2019.01.153.
  30. Hamada, H., Tayeh, B., Yahaya, F., Muthusamy, K. and Al-Attar, A. (2020a), "Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete", Constr. Build. Mater., 261, 119790. https://doi.org/10.1016/j.conbuildmat.2020.119790.
  31. Hamada, H.M., Tayeh, B.A., Al-Attar, A., Yahaya, F.M., Muthusamy, K. and Humada, A.M. (2020b), "The present state of the use of eggshell powder in concrete: a review", J. Build. Eng., 32, 101583. https://doi.org/10.1016/j.jobe.2020.101583.
  32. Hamidi, F., Aslani, F. and Valizadeh, A. (2020), "Compressive and tensile strength fracture models for heavyweight geopolymer concrete", Eng. Fract. Mech., 107023. https://doi.org/10.1016/j.engfracmech.2020.107023.
  33. Hamidi, R.M., Man, Z. and Azizli, K.A. (2016), "Concentration of NaOH and the effect on the properties of fly ash based geopolymer", Procedia Eng., 148, 189-193. https://doi.org/10.1016/j.proeng.2016.06.568.
  34. Han, X., Feng, J., Shao, Y. and Hong, R. (2020), "Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete", Powder Technol., 370, 176-183. https://doi.org/10.1016/j.powtec.2020.05.015.
  35. Hassan, A., Arif, M. and Shariq, M. (2019), "Use of geopolymer concrete for a cleaner and sustainable environment-A review of mechanical properties and microstructure", J. Clean. Prod., 223, 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
  36. Heniegal, A.M., Maaty, A.A.E.S. and Agwa, I.S. (2015), "Simulation of the behavior of pressurized underwater concrete", Alex. Eng. J., 54(2), 183-195. https://doi.org/10.1016/j.aej.2015.03.017.
  37. Horszczaruk, E., Sikora, P., Cendrowski, K. and Mijowska, E. (2017), "The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates", Constr. Build. Mater., 137, 420-431. https://doi.org/10.1016/j.conbuildmat.2017.02.003.
  38. Ibrahim, O.M.O. and Tayeh, B.A. (2020), "Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar", Adv. Concrete Constr., 10(6), 537-546. https://doi.org/10.12989/acc.2020.10.6.537.
  39. Ishak, S., Lee, H.S., Singh, J.K., Ariffin, M.A.M., Lim, N.H.A.S. and Yang, H.M. (2019), "Performance of fly ash geopolymer concrete incorporating bamboo ash at elevated temperature", Mater., 12(20), 3404. https://doi.org/10.3390/ma12203404.
  40. Jindal, B.B. (2019), "Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review", Constr. Build. Mater., 227, 116644. https://doi.org/10.1016/j.conbuildmat.2019.08.025.
  41. Khalaf, M.A., Ban, C.C. and Ramli, M. (2019), "The constituents, properties and application of heavyweight concrete: A review", Constr. Build. Mater., 215, 73-89. https://doi.org/10.1016/j.conbuildmat.2019.04.146.
  42. Kong, D.L. and Sanjayan, J.G. (2010), "Effect of elevated temperatures on geopolymer paste, mortar and concrete", Cement Concrete Res., 40(2), 334-339. https://doi.org/10.1016/j.cemconres.2009.10.017.
  43. Kuenzel, C., Grover, L., Vandeperre, L., Boccaccini, A. and Cheeseman, C. (2013), "Production of nepheline/quartz ceramics from geopolymer mortars", J. Eur. Ceram. Soc., 33(2), 251-258. https://doi.org/10.1016/j.jeurceramsoc.2012.08.022.
  44. Li, N., Shi, C., Zhang, Z., Wang, H. and Liu, Y. (2019), "A review on mixture design methods for geopolymer concrete", Compos. Part B: Eng., 178, 107490. https://doi.org/10.1016/j.compositesb.2019.107490.
  45. Li, Q., Xu, H., Li, F., Li, P., Shen, L. and Zhai, J. (2012), "Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes", Fuel, 97, 366-372. https://doi.org/10.1016/j.fuel.2012.02.059.
  46. Luga, E. and Atis, C.D. (2018), "Optimization of heat cured fly ash/slag blend geopolymer mortars designed by "Combined Design" method: Part 1", Constr. Build. Mater., 178, 393-404. https://doi.org/10.1016/j.conbuildmat.2018.05.140.
  47. Malesev, M., Radonjanin, V., Lukic, I. and Bulatovic, V. (2014), "The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete", Arab. J. Sci. Eng., 39(2), 705-711. https://doi.org/10.1007/s13369-013-0702-2.
  48. McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Clean. Prod., 19(9-10), 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
  49. Memon, F.A., Nuruddin, M.F., Demie, S. and Shafiq, N. (2011), "Effect of curing conditions on strength of fly ash-based selfcompacting geopolymer concrete", Int. J. Civil Environ. Eng., 3, 183-186. https://doi.org/10.5281/zenodo.1070949.
  50. Mijarsh, M.J.A., Megat Johari, M.A., Abu Bakar, B.H., Ahmad, Z.A. and Zeyad, A.M.J.S.C. (2021), "Influence of SiO2, Al2O3, CaO, and Na2O on the elevated temperature performance of alkali-activated treated palm oil fuel ash-based mortar", Struct. Concrete, 22, E380-E399. https://doi.org/10.1002/suco.201900302.
  51. Mijarsha, M., Johari, M.A.M., Tebal, N., Zeyad, A.M., Ahmad, Z.A., Elbasir, O.M. and Mashri, M.O. (2020), "Influence of cement content on the compressive strength and engineering properties of palm oil fuel ash-based hybrid alkaline cement", Third International Conference on Technical Sciences (ICST2020), Tripoli, Libya.
  52. Mustafa, M.A.-T., Hanafi, I., Mahmoud, R. and Tayeh, B. (2019), "Effect of partial replacement of sand by plastic waste on impact resistance of concrete: experiment and simulation", Struct., 20, 519-526. https://doi.org/10.1016/j.istruc.2019.06.008.
  53. Nasr, D., Pakshir, A.H. and Ghayour, H. (2018), "The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars", Constr. Build. Mater., 190, 108-119. https://doi.org/10.1016/j.conbuildmat.2018.09.099.
  54. Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Procedia Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077.
  55. Nath, S. (2018), "Geopolymerization behavior of ferrochrome slag and fly ash blends", Constr. Build. Mater., 181, 487-494. https://doi.org/10.1016/j.conbuildmat.2018.06.070.
  56. Omar, O., Heniegal, A., Abd Elhameed, G. and Mohamadien, H. (2015), "Effect of local steel slag as a coarse aggregate on properties of fly ash based-geopolymer concrete", Eng. Technol., 9, 508-516.
  57. Ouda, A.S. (2015), "Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding", Prog. Nucl. Energy, 79, 48-55. https://doi.org/10.1016/j.pnucene.2014.11.009.
  58. Palomo, A ., Kavalerova, E., Fernandez-Jimenez, A., Krivenko, P., Garcia-Lodeiro, I. and Maltseva, O. (2015), "A review on alkaline activation: new analytical perspectives", Materiales de Construccion, 64(315), e022. http://doi.org/10.3989/mc.2014.00314.
  59. Pan, Z., Sanjayan, J.G. and Collins, F. (2014), "Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure", Cement Concrete Res., 56, 182-189. https://doi.org/10.1016/j.cemconres.2013.11.014.
  60. Phoo-ngernkhama, T., Chindaprasirt, P., Sata, V. and Sinsiri, T. (2013), "High calcium fly ash geopolymer containing diatomite as additive", NISCAIR-CSIR, India.
  61. Ribeiro, R.S., Ribeiro, M.S. and Kriven, W.M. (2017), "A review of particle-and fiber-reinforced metakaolin-based geopolymer composites", J. Ceram. Sci. Technol., 8(3), 307.
  62. Rickard, W.D., Kealley, C.S., Van Riessen, A. (2015), "Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model", J. Am. Ceramic Soc., 98(3), 929-939. https://doi.org/10.1111/jace.13370.
  63. Rickard, W.D., Temuujin, J. and van Riessen, A. (2012), "Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition", J. Non-crystal. Solid., 358(15), 1830-1839. https://doi.org/10.1016/j.jnoncrysol.2012.05.032.
  64. Ryu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S.J.C. and Materials, B. (2013), "The mechanical properties of fly ash-based geopolymer concrete with alkaline activators", Constr. Build. Mater., 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069.
  65. Sakr, K. (2003), "Effect of high temperature or fire on heavy weight concrete properties used in nuclear facilities", Proceedings of the Sixth Arab Conference on the Peaceful Uses of Atomic Energy, Vol.II. Scientific Presentation.
  66. Sakr, K. and El-Hakim, E. (2005), "Effect of high temperature or fire on heavy weight concrete properties", Cement Concrete Res., 35(3), 590-596. https://doi.org/10.1016/j.cemconres.2004.05.023.
  67. Sarker, P.K., Kelly, S. and Yao, Z. (2014), "Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete", Mater. Des., 63, 584-592. https://doi.org/10.1016/j.matdes.2014.06.059.
  68. Shahidan, S., Tayeh, B.A., Jamaludin, A., Bahari, N., Mohd, S., Ali, N.Z. and Khalid, F. (2017), "Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin", IOP Conf. Ser.: Mater. Sci. Eng., 271(1), 012004. https://doi.org/10.1088/1757-899X/271/1/012004
  69. Singh, B., Ishwarya, G., Gupta, M. and Bhattacharyya, S. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85, 78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
  70. Singh, M., Srivastava, A., Bhunia, D.J.C. and Materials, B. (2019), "Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry", Constr. Build. Mater., 198, 553-569. https://doi.org/10.1016/j.conbuildmat.2018.12.005.
  71. Singh, N., Kumar, M. and Rai, S. (2020), "Geopolymer cement and concrete: Properties", Mater. Today: Proc., 29, 743-748. https://doi.org/10.1016/j.matpr.2020.04.513.
  72. Tawfik, T.A., Metwally, K.A., El-Beshlawy, S., Al Saffar, D.M., Tayeh, B.A. and Hassan, H.S. (2020), "Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties", J. King Saud Univ.-Eng. Sci., https://doi.org/10.1016/j.jksues.2020.06.007.
  73. Tayeh, B.A. and Al Saffar, D.M. (2018), "Utilization of waste iron powder as fine aggregate in cement mortar", J. Eng. Res. Technol., 5(2), 22-27.
  74. Tayeh, B.A., Al Saffar, D.M. and Alyousef, R. (2020a), "The utilization of recycled aggregate in high performance concrete: a review", J. Mater. Res. Technol., 9(4), 8469-8481. https://doi.org/10.1016/j.jmrt.2020.05.126.
  75. Tayeh, B.A., Hasaniyah, M.W., Zeyad, A.M., Awad, M.M., Alaskar, A., Mohamed, A.M. and Alyousef, R. (2020b), "Durability and mechanical properties of seashell partiallyreplaced cement", J. Build. Eng., 31, 101328. https://doi.org/10.1016/j.jobe.2020.101328.
  76. Triwulan, P.W. and Januarti, J.E. (2016), "Addition of superplasticizer on geopolymer concrete", Arpn J. Eng. Appl. Sci., 11(24), 14456-14462.
  77. ul Haq, E., Padmanabhan, S.K. and Licciulli, A. (2014), "Synthesis and characteristics of fly ash and bottom ash based geopolymers-A comparative study", Ceram. Int., 40(2), 2965-2971. https://doi.org/10.1016/j.ceramint.2013.10.012.
  78. Valizadeh, A., Aslani, F., Asif, Z. and Roso, M. (2019), "Development of heavyweight self-compacting concrete and ambient-cured heavyweight geopolymer concrete using magnetite aggregates", Mater., 12(7), 1035. https://doi.org/10.3390/ma12071035.
  79. Xiong, M.X., Liew, J.R., Wang, Y.B., Xiong, D.X. and Lai, B.L. (2020), "Effects of coarse aggregates on physical and mechanical properties of C170/185 ultra-high strength concrete and compressive behaviour of CFST columns", Constr. Build. Mater., 240, 117967. https://doi.org/10.1016/j.conbuildmat.2019.117967.
  80. Yildizel, S.A., Tayeh, B.A. and Calis, G. (2020), "Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and extreme vertices design techniques", J. Mater. Res. Technol., 9(2), 2093-2106. https://doi.org/10.1016/j.jmrt.2020.02.083.
  81. Yilmaz, E., Baltas, H., Kiris, E., Ustabas, I., Cevik, U. and El-Khayatt, A. (2011), "Gamma ray and neutron shielding properties of some concrete materials", Ann. Nucl. Energy, 38(10), 2204-2212. https://doi.org/10.1016/j.anucene.2011.06.011.
  82. Zaim, N. and Hatipoglu, D. (2018), "Experimental investigation of gamma radiation attenuation coefficients for kirklareli marble", J. Nat. Appl. Sci., 22(1), 141-147. https://doi.org/10.19113/sdufbed.22241.
  83. Zeyad, A.M., Johari, M., Tayeh, B.A. and Saba, A.M. (2017), "Ultrafine palm oil fuel ash: from an agro-industry by-product into a highly efficient mineral admixture for high strength green concrete", J. Eng. Appl. Sci., 12(7), 8187-8196.
  84. Zeyad, A.M., Johari, M.A.M., Abutaleb, A. and Tayeh, B.A. (2021), "The effect of steam curing regimes on the chloride resistance and pore size of high-strength green concrete", Constr. Build. Mater., 280, 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409.
  85. Zeyad, A.M., Tayeh, B.A., Saba, A.M. and Johari, M. (2018), "Workability, setting time and strength of high-strength concrete containing high volume of palm oil fuel ash", Open Civil Eng. J., 12(1), 35-46. https://doi.org/10.2174/1874149501812010035.