DOI QR코드

DOI QR Code

Thermal Comfort Prediction for the Occupant based on Physiological Signals from Wearable Device

웨어러블 디바이스의 생리 신호 기반 온열 쾌적감 예측모델 개발

  • 이윤희 (연세대 일반대학원 실내건축학과) ;
  • 전정윤 (연세대 실내건축학과)
  • Received : 2021.08.05
  • Accepted : 2021.10.05
  • Published : 2021.10.30

Abstract

Thermal comfort is essential to maintain a stress-free environment in a building. This study investigated the thermal environment to develop a thermal comfort prediction model based on physiological signals and thermal comfort-related responses obtained from a wearable device. Field experiments conducted in an office during cooling and heating seasons enabled the collection of real-time thermal comfort responses and physiological signals, such as skin temperature, heart rate, and electrodermal activity of the occupant using the wearable device. We analyzed the relationships between the thermal comfort responses, physiological factors, and thermal environment to develop an accurate thermal comfort prediction model. While the skin temperature and electrodermal activity exhibited a significant relationship with the thermal state, a low heart rate was observed in a more comfortable state. Moreover, machine learning classifiers predicted the thermal comfort state achieved an accuracy of 80% in both seasons using only physiological data. Thus, the feature importance of the random forest classifier verified that physiological factors aid the prediction of thermal states significantly. The proposed prediction model can be potentially applied in heating, ventilation, and air conditioning (HVAC) control. The high performance confirmed the use of wearable devices in identifying the thermal status of building occupants.

Keywords

Acknowledgement

이 연구는 2020년도 한국연구재단 연구비 지원 (과제번호:2020R1A2B5B01002206)과 4단계 BK21 사업의 지원을 받아 수행된 연구임.

References

  1. Burzo, M., Wicaksono, C., Abouelenien, M., Perez-Rosas, V., Mihalcea, R., & Tao, Y. (2014). Multimodal sensing of thermal discomfort for adaptive energy saving in buildings. iiSBE NET ZERO BUILT ENVIRONMENT, 344.
  2. Chaudhuri, T., Soh, Y. C., Li, H., & Xie, L. (2019). A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings. Applied energy, 248, 44-53. https://doi.org/10.1016/j.apenergy.2019.04.065
  3. Chaudhuri, T., Zhai, D., Soh, Y. C., Li, H., Xie, L., & Ou, X. (2018, July). Convolutional neural network and kernel methods for occupant thermal state detection using wearable technology. In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
  4. Choi, J. H., Loftness, V., & Lee, D. W. (2012). Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Building and Environment, 50, 165-175. https://doi.org/10.1016/j.buildenv.2011.10.009
  5. Cosma, A. C., & Simha, R. (2019). Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions. Building and Environment, 148, 372-383. https://doi.org/10.1016/j.buildenv.2018.11.017
  6. Dai, C., Zhang, H., Arens, E., & Lian, Z. (2017). Machine learning approaches to predict thermal demands using skin temperatures: Steady-state conditions. Building and Environment, 114, 1-10. https://doi.org/10.1016/j.buildenv.2016.12.005
  7. Danieli, M., Berra, E., Di Monaco, S., Fulcheri, C., Gosh, A., Perlo, E., ... & Veglio, F. (2016). Automatically classifying essential asterial hypertension from physiological and daily lif stress responses. Journal of Hypertension, 34, e164.
  8. Fang, L., Wyon, D. P., Clausen, G., & Fanger, P. O. (2004). Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor air, 14, 74-81.
  9. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
  10. Gan, G., & Croome, D. J. (1994). Thermal comfort models based on field measurements. Transactions-American Society Of Heating Refrigerating And Air Conditioning Engineers, 100, 782-782.
  11. Gerrett, N., Redortier, B., Voelcker, T., & Havenith, G. (2013). A comparison of galvanic skin conductance and skin wettedness as indicators of thermal discomfort during moderate and high metabolic rates. Journal of Thermal Biology, 38(8), 530-538. https://doi.org/10.1016/j.jtherbio.2013.09.003
  12. Ghahramani, A., Tang, C., & Becerik-Gerber, B. (2015). An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling. Building and Environment, 92, 86-96. https://doi.org/10.1016/j.buildenv.2015.04.017
  13. Hagbarth, K. E., Hallin, R. G., Hongell, A., Torebjork, H. E., & Wallin, B. G. (1972). General characteristics of sympathetic activity in human skin nerves. Acta Physiologica Scandinavica, 84(2), 164-176. https://doi.org/10.1111/j.1748-1716.1972.tb05167.x
  14. Hamatani, T., Uchiyama, A., & Higashino, T. (2015, May). Real-time calibration of a human thermal model with solar radiation using wearable sensors. In Proceedings of the 2015 workshop on Wearable Systems and Applications (pp. 45-50).
  15. Handbook, A. S. H. R. A. E. (2001). Fundamentals, 2001, ASHRAE, Atlanta.
  16. Kim, J., Schiavon, S., & Brager, G. (2018). Personal comfort models-A new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment, 132, 114-124. https://doi.org/10.1016/j.buildenv.2018.01.023
  17. Kunimoto, M., Kirno, K., Elam, M., Karlsson, T., & Wallin, B. G. (1992). Neuro-effector characteristics of sweat glands in the human hand activated by irregular stimuli. Acta physiologica scandinavica, 146(2), 261-269. https://doi.org/10.1111/j.1748-1716.1992.tb09415.x
  18. Lan, L., Wargocki, P., & Lian, Z. (2011). Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, 43(5), 1057-1062. https://doi.org/10.1016/j.enbuild.2010.09.001
  19. Liu, W., Lian, Z., & Liu, Y. (2008). Heart rate variability at different thermal comfort levels. European journal of applied physiology, 103(3), 361-366. https://doi.org/10.1007/s00421-008-0718-6
  20. Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: principles and practice. Routledge.
  21. Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: principles and practice. Routledge.
  22. Pantavou, K., Theoharatos, G., Mavrakis, A., & Santamouris, M. (2011). Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Building and Environment, 46(2), 339-344. https://doi.org/10.1016/j.buildenv.2010.07.026
  23. Salamone, F., Belussi, L., Curro, C., Danza, L., Ghellere, M., Guazzi, G., ... & Meroni, I. (2018). Integrated method for personal thermal comfort assessment and optimization through users' feedback, IoT and machine learning: A case study. Sensors, 18(5), 1602. https://doi.org/10.3390/s18051602
  24. Strath, S. J., Swartz, A. M., Bassett Jr, D. R., O'Brien, W. L., King, G. A., & Ainsworth, B. E. (2000). Evaluation of heart rate as a method for assessing moderate intensity physical activity. Medicine and science in sports and exercise, 32(9 Suppl), S465-70. https://doi.org/10.1097/00005768-200009001-00005
  25. Takada, S., Kobayashi, H., & Matsushita, T. (2009). Thermal model of human body fitted with individual characteristics of body temperature regulation. Building and Environment, 44(3), 463-470. https://doi.org/10.1016/j.buildenv.2008.04.007
  26. Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., & Picard, R. (2015, August). Automatic identification of artifacts in electrodermal activity data. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1934-1937). IEEE.
  27. Villarejo, M. V., Zapirain, B. G., & Zorrilla, A. M. (2012). A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors, 12(5), 6075-6101. https://doi.org/10.3390/s120506075
  28. Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications-a review. Applied energy, 115, 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062