DOI QR코드

DOI QR Code

Extraction of Line Drawing From Cartoon Painting Using Generative Adversarial Network

Generative Adversarial Network를 이용한 카툰 원화의 라인 드로잉 추출

  • 유경호 (조선대학교 컴퓨터공학과) ;
  • 양희덕 (조선대학교 컴퓨터공학과)
  • Received : 2021.06.21
  • Accepted : 2021.07.02
  • Published : 2021.06.30

Abstract

Recently, 3D contents used in various fields have been attracting people's attention due to the development of virtual reality and augmented reality technology. In order to produce 3D contents, it is necessary to model the objects as vertices. However, high-quality modeling is time-consuming and costly. In order to convert a 2D character into a 3D model, it is necessary to express it as line drawings through feature line extraction. The extraction of consistent line drawings from 2D cartoon cartoons is difficult because the styles and techniques differ depending on the designer who produces them. Therefore, it is necessary to extract the line drawings that show the geometrical characteristics well in 2D cartoon shapes of various styles. This study proposes a method of automatically extracting line drawings. The 2D Cartoon shading image and line drawings are learned by using adversarial network model, which is artificial intelligence technology and outputs 2D cartoon artwork of various styles. Experimental results show the proposed method in this research can be obtained as a result of the line drawings representing the geometric characteristics when a 2D cartoon painting as input.

최근 웹툰이나 애니메이션을 3D 콘텐츠로 제작하는 사례가 증가하고 있다. 3D 콘텐츠 제작에서 모델링은 반드시 필요하지만 시간이 오래 걸리는 작업이다. 드로잉 기반 모델링을 사용하여 2D 카툰 원화에서 3D 모델을 생성하기 위해서는 라인 드로잉이 필요하다. 하지만 2D 카툰원화는 3D 모델의 기하학적 특성이 표현되지 않고 카툰원화의 제작 기법이 다양하여 일관성 있게 라인 드로잉 추출이 힘들다. 본 연구에서는 generative adversarial network (GAN) 모델을 사용하여 2D 카툰 원화에서 3D 모델의 기하학적 특성을 나타내는 라인 드로잉을 추출하는 방법을 제안하고 이를 실험한다.

Keywords

Acknowledgement

이 논문은 2017년도 교육과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2017R1A2B4005305).

References

  1. 허예지, 황보영, 오승주, 신대영, 이종원. "웹툰의 인지도와 게임의 인지도간의 관계", 한국컴퓨터정보학회지, 제24권, 제2호, 323-326쪽, 2016년 7월
  2. O. Luke, et al. "Sketch-based modeling: A survey," Computers & Graphics, Vol. 33, No. 1, pp. 85-103, 2009. https://doi.org/10.1016/j.cag.2008.09.013
  3. 김성예, 김희정, 김보연, 이지형, 구본기, "비사실적 렌더링 기술동향," 한국멀티미디어학회지, 제9권, 제3-4호, 78-94쪽, 2005년 12월
  4. 강윤석, 호요성, "실감방송을 위한 3차원 영상 촬영 및 3차원 콘텐츠 제작 기술," 스마트미디어저널, 제1권, 제1호, 14-20쪽, 2012년 3월
  5. 김형숙, 이종혁, 이현동, "인공지능 기반 개인 맞춤형 의류 추천 서비스 개발," 스마트미디어저널, 제10권, 제1호, 116-123쪽, 2021년 03월
  6. N. N. Hoang, G.-S. Lee, S.-H. Kim, and H.-J. Yang, "Effective hand gesture recognition by key frame selection and 3D neural network," Smart Media Journal Vol. 9, No. 1, pp. 23-29, 2020. https://doi.org/10.30693/SMJ.2020.9.1.23
  7. I. K. Kazmi, L. You, X. Yang, X. Jin, and J. J. Zhang, "Efficient sketch-based creation of detailed character models through data-driven mesh deformations," Computer Animation and Virtual Worlds, Vol. 26, No. 3-4, pp. 469-481, 2015. https://doi.org/10.1002/cav.1656
  8. Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang, "3D shape reconstruction from sketches via multi-view convolutional networks," Proc. of 3D Vision, Rome, Italy, pp. 64-77, Apr. 2007.
  9. F. Wang, L. Kang, and Y. Li, "Sketch-based 3D shape retrieval using convolutional neural networks," Proc. of International Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 1875-1883, Jun. 2015.
  10. D. DeCarlo, A. Finkelstein, and S. Rusinkiewicz, "Interactive rendering of suggestive contours with temporal coherence," Proc. of International Symposium on Non-Photorealistic Animation and Rendering, Annecy, France, pp. 15-24, Jun. 2004.
  11. P. Benard, A. Hertzmann, and M. Kass, "Computing smooth surface contours with accurate topology," ACM Transa. on Graphics, Vol. 33, No. 2, pp. 19-25, 2014.
  12. T. Judd, F. Durand, and E. Adelson, "Apparent ridges for line drawing," ACM Trans. on Graphics, Vol. 26, No. 3, pp. 19-26, 2007. https://doi.org/10.1145/1276377.1276401
  13. J. Bender, A. Kuijper, T. Landesberger, H. Theisel, and P. Urban, "Comparative evaluation of feature line techniques for shape depiction," Proc. of Vision, Modeling and Visualization, Darmstadt, Germany, pp. 31-38, Oct. 2014.
  14. D. Zorin, P. Schroder, T. Derose, L. Kobbelt, A. Levinet, W. Sweldens, "Subdivision for modeling and animation," SIGGRAPH 2000 Course Notes, Denis Zorin, New York University. 2000.
  15. J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, "Stacked convolutional auto-encoders for hierarchical feature extraction," Proc. of Artificial Neural Networks and Machine Learning, Espoo, Finland, pp. 52-59, Jun. 2011.
  16. J. Chen, L. Du, and L. Liao, "Discriminative mixture variational autoencoder for semisupervised classification," IEEE Trans. on Cybernetics, pp. 1-15, 2020. (Early Access)
  17. M. Mirza and O. Simon, "Conditional generative adversarial nets," arXiv:1411.1784, 2014.
  18. P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial networks," Proc. of Conference on Computer Vision and Pattern Recognition, pp. 1125-134, Honolulu, Hawai, Jul. 2017.