DOI QR코드

DOI QR Code

COVID-19 팬데믹에서 Airbnb 호스트의 마케팅 전략의 변화가 공유성과에 미치는 영향

The Effect of Changes in Airbnb Host's Marketing Strategy on Listing Performance in the COVID-19 Pandemic

  • 김소영 (국민대학교 데이터사이언스학과) ;
  • 심지환 (국민대학교 데이터사이언스학과) ;
  • 정여진 (국민대학교)
  • 투고 : 2021.05.13
  • 심사 : 2021.09.14
  • 발행 : 2021.09.30

초록

전 세계적인 COVID-19의 유행으로 인해 관광산업 전반이 큰 타격을 받고 있다. 최근 공유경제의 확산으로 팽창되고 있는 Airbnb와 같은 숙박 공유서비스는 공급자와 수요자 간의 신뢰와 소통을 기반으로 거래가 이루어지기 때문에 팬데믹으로 인한 영향을 특히 크게 받고 있다. 팬데믹 상황이 개인의 여행에 대한 인식과 행동을 변화시킴에 따라 이를 개선하기 위한 전략에 대한 논의가 이루어지고 있지만 대부분의 연구는 전통적인 외식업, 숙박업 공급자와 정부 측면의 거시적 전략을 제시하고 있다. 본 연구는 Peer-to-Peer 거래 중심의 공유경제의 특수성을 고려하여 COVID-19 팬데믹 발생 전후로 Airbnb 개별 호스트의 마케팅 전략의 변화가 공유성과에 미치는 영향을 실증적으로 분석함으로써 개별 호스트 측면의 팬데믹 전략에 대해 논한다. Airbnb의 호스트가 본인의 시설을 홍보하는 통로인 시설소개 텍스트를 수집하여 딥러닝 기반 특성추출방법인 Attention-based aspect extraction 모델로부터 9개의 주요 특성을 추출하였다. 추출된 특성이 해당 텍스트에서 등장하는 빈도가 COVID-19 발생 전후 변화량을 측정하여 이것이 공유성과에 미치는 영향을 분석하였다. 또한 이러한 영향을 숙박시설의 유형 간에 비교함으로써 시설 유형별 효과적으로 작용하는 특성을 관찰하였다. 회귀분석 결과 주방시설, 정원, 호스트와의 교류 순으로 공유성과에 긍정적인 영향을 보이지만 시설 유형에 따라 공유성과에 미치는 영향은 다소 차이가 있었다. 특히 집 전체를 대여하는 경우 개인실 대여에 비해 주방시설에 대한 설명이 상당한 효과를 보여주었다. 이를 통해 본 연구는 공유숙박 서비스의 개별 서비스 제공자가 시설의 종류에 따라 취할 수 있는 팬데믹 위기 대처전략에 대한 아이디어를 제시한다.

The entire tourism industry is being hit hard by the COVID-19 as a global pandemic. Accommodation sharing services such as Airbnb, which have recently expanded due to the spread of the sharing economy, are particularly affected by the pandemic because transactions are made based on trust and communication between consumer and supplier. As the pandemic situation changes individuals' perceptions and behavior of travel, strategies for the recovery of the tourism industry have been discussed. However, since most studies present macro strategies in terms of traditional lodging providers and the government, there is a significant lack of discussion on differentiated pandemic response strategies considering the peculiarity of the sharing economy centered on peer-to-peer transactions. This study discusses the marketing strategy for individual hosts of Airbnb during COVID-19. We empirically analyze the effect of changes in listing descriptions posted by the Airbnb hosts on listing performance after COVID-19 was outbroken. We extract nine aspects described in the listing descriptions using the Attention-Based Aspect Extraction model, which is a deep learning-based aspect extraction method. We model the effect of aspect changes on listing performance after the COVID-19 by observing the frequency of each aspect appeared in the text. In addition, we compare those effects across the types of Airbnb listing. Through this, this study presents an idea for a pandemic crisis response strategy that individual service providers of accommodation sharing services can take depending on the listing type.

키워드

과제정보

본 연구는 산림청(한국임업진흥원) '산림과학기술 연구개발사업(2019150B10-2123-0301)'의 지원에 의하여 이루어진 것입니다.

참고문헌

  1. Alamanda, D. T., A. Ramdhani, I. Kania, W. Susilawati, and E. S. Hadi, "Sentiment analysis using text mining of Indonesia tourism reviews via social media," International Journal of Humanities, Arts and Social Sciences, Vol.5, No.2(2019), 43~53. https://doi.org/10.20469/ijhss.5.10001-2
  2. Alan, C. B., S. So, and L. Sin, "Crisis management and recovery, how restaurants in Hong Kong responded to SARS," International Journal of Hospitality Management, Vol.25, No.1(2006), 3~11. https://doi.org/10.1016/j.ijhm.2004.12.001
  3. Al-Saggaf, Y., and P. Simmons, "Social media in Saudi Arabia: Exploring its use during two natural disasters," Technological Forecasting and Social Change, Vol.95, (2015), 3~15. https://doi.org/10.1016/j.techfore.2014.08.013
  4. Bjorkelund, E., T. H. Burnett, and K. Norvag, "A study of opinion mining and visualization of hotel reviews," Proceedings of the 14th International Conference on Information Integration and Web-based Applications & Services, (2012), 229~238.
  5. Blake, A., and M. T. Sinclair, "Tourism crisis management, US response to September 11," Annals of Tourism Research, Vol.30, No.4(2003), 813~832. https://doi.org/10.1016/S0160-7383(03)00056-2
  6. Blei, D. M., A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," the Journal of machine Learning research, Vol.3, (2003), 993~1022.
  7. Braun-LaTour, K. A., M. J. Grinley, and E. F. Loftus, "Tourist memory distortion," Journal of Travel Research, Vol.44, No.4(2006), 360~367. https://doi.org/10.1177/0047287506286721
  8. Bruno, S., C. Yang, W. Tian, Z. Xie, and Y. Shao, "Exploring the characteristics of tourism industry by analyzing consumer review contents from social media: a case study of Bamako, Mali," Geo-spatial Information Science, Vol.22, No.3(2019), 214~222. https://doi.org/10.1080/10095020.2019.1649848
  9. Cahyanto, I., M. Wiblishauser, L. Pennington-Gray, and A. Schroeder, "The dynamics of travel avoidance, The case of Ebola in the US," Tourism Management Perspectives, Vol.20, (2016), 195~203. https://doi.org/10.1016/j.tmp.2016.09.004
  10. Chang, J. R., M. Y. Chen, L. S. Chen, and S. C. Tseng, "Why customers don't revisit in tourism and hospitality industry?," IEEE Access, Vol.7, (2019), 146588~146606. https://doi.org/10.1109/access.2019.2946168
  11. Che, T., Z. Peng, K. H. Lim, and Z. Hua, "Antecedents of consumers' intention to revisit an online group-buying website: A transaction cost perspective," Information & Management, Vol.52, No.5(2015), 588~598. https://doi.org/10.1016/j.im.2015.04.004
  12. Cheng, X., S. Fu, and G. J. de Vreede, "A mixed method investigation of sharing economy driven car-hailing services, Online and offline perspectives," International Journal of Information Management, Vol.41, (2018), 57~64. https://doi.org/10.1016/j.ijinfomgt.2018.03.005
  13. Chuo, H. Y., "Theme park visitors' responses to the SARS outbreak in Taiwan," Advances in Hospitality and Leisure, Vol.3, (2007), 87~104. https://doi.org/10.1016/S1745-3542(06)03006-2
  14. Fishbein, M., J. Jaccard, A. R. Davidson, I. Ajzen, and B. Loken, "Predicting and understanding family planning behaviors," Understanding attitudes and predicting social behavior, Prentice Hall, New Jersey, 1980.
  15. He, R., W. S. Lee, H. T. Ng, and D. Dahlmeier, "An unsupervised neural attention model for aspect extraction," Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1, Long Papers), Vol.1, (2017), 388~397.
  16. He, W., S. Zha, and L. Li, "Social media competitive analysis and text mining: A case study in the pizza industry," International journal of information management, Vol.33, No.3(2013), 464~472. https://doi.org/10.1016/j.ijinfomgt.2013.01.001
  17. Huang, A., C. Makridis, M. Baker, M. Medeiros, and Z. Guo, "Understanding the impact of COVID-19 intervention policies on the hospitality labor market," International Journal of Hospitality Management, Vol.91, (2020), 102660. https://doi.org/10.1016/j.ijhm.2020.102660
  18. Ilhan, A., "The challenges of the sharing economy users and the impacts of pandemic (COVID 19)," Economic and Social Development, Book of Proceedings, (2020), 185~192.
  19. Jiang, Y., and B. W. Ritchie, "Disaster collaboration in tourism, Motives, impediments and success factors," Journal of Hospitality and Tourism Management, Vol.31, (2017), 70~82. https://doi.org/10.1016/j.jhtm.2016.09.004
  20. Jin, W., H. H. Ho, and R. K. Srihari, "A novel lexicalized HMM-based learning framework for web opinion mining," Proceedings of the 26th annual international conference on machine learning, (2009), 465~472.
  21. Kim, J., and J. C. Lee, "Effects of COVID-19 on preferences for private dining facilities in restaurants," Journal of Hospitality and Tourism Management, Vol.45, (2020), 67~70. https://doi.org/10.1016/j.jhtm.2020.07.008
  22. Kim, K., O. J. Park, S. Yun, and H. Yun, "What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management," Technological Forecasting and Social Change, Vol.123, (2017), 362~369. https://doi.org/10.1016/j.techfore.2017.01.001
  23. Kim, S. B., D. Y. Kim, and K. Wise, "The effect of searching and surfing on recognition of destination images on Facebook pages," Computers in Human Behavior, Vol.30, (2014), 813~823. https://doi.org/10.1016/j.chb.2013.07.010
  24. Lashley, C., and A. Morrison, In search of hospitality, Routledge, London, 2013.
  25. Leggat, P. A., L. H. Brown, P. Aitken, and R. Speare, "Level of concern and precaution taking among Australians regarding travel during pandemic (H1N1) 2009, results from the 2009 Queensland Social Survey," Journal of travel medicine, Vol.17, No.5(2010), 291~295. https://doi.org/10.1111/j.1708-8305.2010.00445.x
  26. Lin, W. Y., X. Zhang, H. Song, and K. Omori, "Health information seeking in the Web 2.0 age, Trust in social media, uncertainty reduction, and self-disclosure," Computers in Human Behavior, Vol.56, (2016), 289~294. https://doi.org/10.1016/j.chb.2015.11.055
  27. Liu, C. H. S., and T. Lee, "Service quality and price perception of service: Influence on word-of-mouth and revisit intention," Journal of Air Transport Management, Vol.52, (2016), 42~54. https://doi.org/10.1016/j.jairtraman.2015.12.007
  28. Lutz, C., and G. Newlands, "Consumer segmentation within the sharing economy, The case of Airbnb," Journal of Business Research, Vol. 88, (2018), 187~196. https://doi.org/10.1016/j.jbusres.2018.03.019
  29. Mimno, D., and A. McCallum, "Topic models conditioned on arbitrary features with Dirichlet-multinomial regression," UAI, Vol. 24, (2008), 411~418.
  30. Mimno, D., H. M. Wallach, E. Talley, M. Leenders, and A. McCallum, "Optimizing semantic coherence in topic models," Proceedings of the 2011 conference on empirical methods in natural language processing, (2011), 262~272.
  31. Nabity-Grover, T., C. M. K. Cheung, and J. B. Thatcher, "Inside out and outside in, How the COVID-19 pandemic affects self-disclosure on social media," International Journal of Information Management, Vol.55, (2020), 102188. https://doi.org/10.1016/j.ijinfomgt.2020.102188
  32. Neuburger, L., and R. Egger, "Travel risk perception and travel behaviour during the COVID-19 pandemic 2020, a case study of the DACH region," Current Issues in Tourism, Vol.24, No.7(2021), 1003~1016. https://doi.org/10.1080/13683500.2020.1803807
  33. Nieto Garcia, M., P. A. Munoz-Gallego, G. Viglia, and O. Gonzalez-Benito, "Be social! The impact of self-presentation on peer-to-peer accommodation revenue," Journal of Travel Research, Vol.59, No.7(2020), 1268~1281. https://doi.org/10.1177/0047287519878520
  34. Novelli, M., L. G. Burgess, A. Jones, and B. W. Ritchie, "'No Ebola... still doomed'-The Ebola-induced tourism crisis," Annals of Tourism Research, Vol.70, (2018), 76~87. https://doi.org/10.1016/j.annals.2018.03.006
  35. Ooms, W., J. Bell, and R. A. W. Kok, "Use of social media in inbound open innovation: Building capabilities for absorptive capacity," Creativity and Innovation Management, Vol.24, No.1(2015), 136~150. https://doi.org/10.1111/caim.12105
  36. Paek, H. J., T. Hove, H. J. Jeong, and M. Kim, "Peer or expert? The persuasive impact of YouTube public service announcement producers," International Journal of Advertising, Vol.30, No.1(2011), 161~188. https://doi.org/10.2501/IJA-30-1-161-188
  37. Pavlatos, O., H. Kostakis, and D. Digkas, "Crisis management in the Greek hotel industry in response to COVID-19 pandemic," Anatolia, Vol.32, No.1(2021), 80~92. https://doi.org/10.1080/13032917.2020.1850485
  38. Poria, S., E. Cambria, and A. Gelbukh, "Aspect extraction for opinion mining with a deep convolutional neural network," Knowledge-Based Systems, Vol.108, (2016), 42~49. https://doi.org/10.1016/j.knosys.2016.06.009
  39. Reisinger, Y., and F. Mavondo, "Travel anxiety and intentions to travel internationally, Implications of travel risk perception," Journal of travel research, Vol.43, No.3(2005), 212~225. https://doi.org/10.1177/0047287504272017
  40. Richardson, L., "Performing the sharing economy," Geoforum, Vol.67, (2015), 121~129. https://doi.org/10.1016/j.geoforum.2015.11.004
  41. Roberts, M. E., B. M. Stewart, and E. M. Airoldi, "A model of text for experimentation in the social sciences," Journal of the American Statistical Association, Vol.111, No.515(2016), 988~1003. https://doi.org/10.1080/01621459.2016.1141684
  42. Said, C., Window into Airbnb's hidden impact on S.F. - San Francisco Chronicle, 2014. Available at http://www.sfchronicle.com/business/item/Window-into-Airbnb-s-hidden-impact-on-SF-30110.php.
  43. Shin, H., and J. Kang, "Reducing perceived health risk to attract hotel customers in the COVID19 pandemic era, Focused on technology innovation for social distancing and cleanliness," International Journal of Hospitality Management, Vol.91, (2020), 102664. https://doi.org/10.1016/j.ijhm.2020.102664
  44. Slattery, P., "Finding the hospitality industry," Journal of Hospitality, Leisure, Sport and Tourism Education, Vol.1, No.1(2002), 19~28. https://doi.org/10.3794/johlste.11.7
  45. Slevitch, L., and A. Sharma, "Management of perceived risk in the context of destination choice," International Journal of Hospitality & Tourism Administration, Vol.9, No.1 (2008), 85~103. https://doi.org/10.1080/15256480801910574
  46. Stylos, N., V. Bellou, A. Andronikidis, and C. A. Vassiliadis, "Linking the dots among destination images, place attachment, and revisit intentions: A study among British and Russian tourists," Tourism Management, Vol.60, (2017), 15~29. https://doi.org/10.1016/j.tourman.2016.11.006
  47. Tan, A. H., "Text mining: The state of the art and the challenges," Proceedings of the pakdd 1999 workshop on knowledge discovery from advanced databases, Vol.8, (1999), 65~70.
  48. Tew, P. J., Z. Lu, G. Tolomiczenko, and J. Gellatly, "SARS, lessons in strategic planning for hoteliers and destination marketers," International Journal of Contemporary Hospitality Management, Vol.20, No.3(2008).
  49. Turban, E., N. Bolloju, and T. P. Liang, "Enterprise social networking: Opportunities, adoption, and risk mitigation," Journal of Organizational Computing and Electronic Commerce, Vol.21, No.3(2011), 202~220. https://doi.org/10.1080/10919392.2011.590109
  50. UNISDR, Terminology on Disaster Risk Reduction, United Nations, Geneva, (2009).
  51. UNWTO, World Tourism Barometer, World Tourism Organization, Vol.18, No.2(2020).
  52. Wang, W., S. J. Pan, D. Dahlmeier, and X. Xiao, "Recursive neural conditional random fields for aspect-based sentiment analysis," arXiv preprint arXiv,1603.06679, (2016).
  53. Wilson, A., V. A. Zeithaml, M. J. Bitner, and D. D. Gremler, Services marketing: Integrating customer focus across the firm, McGraw Hill, New York, 2012.
  54. Ye, Q., R. Law, B. Gu, and W. Chen, "The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings," Computers in Human behavior, Vol.27, No.2 (2011), 634~639. https://doi.org/10.1016/j.chb.2010.04.014
  55. Zenker, S., and F. Kock, "The coronavirus pandemic -A critical discussion of a tourism research agenda," Tourism management, Vol.81, (2020), 104164. https://doi.org/10.1016/j.tourman.2020.104164
  56. Zhang, L., Q. Yan, and L. Zhang, "A text analytics framework for understanding the relationships among host self-description, trust perception and purchase behavior on Airbnb," Decision Support Systems, Vol.133, (2020), 113288. https://doi.org/10.1016/j.dss.2020.113288