DOI QR코드

DOI QR Code

Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea

  • Nguyen, Manh Ha (Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Shin, Keum Chul (Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University (Institute of Agriculture and Life Science)) ;
  • Lee, Jong Kyu (Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University)
  • Received : 2021.03.15
  • Accepted : 2021.06.17
  • Published : 2021.08.31

Abstract

Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.

Keywords

Acknowledgement

This research was supported by research grants from National Research Foundation of Korea [NRF-2017R1D1A3B03033191].

References

  1. Gouda S, Das G, Sen SK, et al. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7:1538. https://doi.org/10.3389/fmicb.2016.01538
  2. Sun X, Guo LD. Endophytic fungal diversity: review of traditional and molecular techniques. Mycology. 2012;3(1):65-76.
  3. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MDC, et al. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183: 92-99. https://doi.org/10.1016/j.micres.2015.11.008
  4. Miliute I, Buzaite O, Baniulis D, et al. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirb-Agric. 2015; 102(4):465-478. https://doi.org/10.13080/z-a.2015.102.060
  5. Thomas T, Gilbert J, Meyer F. Metagenomics - a guide from sampling to data analysis. Microb Inform Exp. 2012;2(1):3. https://doi.org/10.1186/2042-5783-2-3
  6. Streit WR, Schmitz RA. Metagenomics - the key to the uncultured microbes. Curr Opin Microbiol. 2004;7(5):492-498. https://doi.org/10.1016/j.mib.2004.08.002
  7. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38(1):525-552. https://doi.org/10.1146/annurev.genet.38.072902.091216
  8. Jumpponen A, Jones KL. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol. 2009;184(2):438-448. https://doi.org/10.1111/j.1469-8137.2009.02990.x
  9. Jumpponen A, Jones KL. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol. 2010;186(2):496-513. https://doi.org/10.1111/j.1469-8137.2010.03197.x
  10. Wemheuer F, Wemheuer B, Daniel R, et al. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci Rep. 2019;9(1):14183. https://doi.org/10.1038/s41598-019-50540-2
  11. Gweon HS, Oliver A, Taylor J, et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol. 2015; 6(8):973-980. https://doi.org/10.1111/2041-210X.12399
  12. Kemler M, Garnas J, Wingfield MJ, et al. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLOS One. 2013;8(12):e81718. https://doi.org/10.1371/journal.pone.0081718
  13. Whiteley AS, Jenkins S, Waite I, et al. Microbial 16S rRNA Ion Tag and community metagenome sequencing using the Ion Torrent (PGM) platform. J Microbiol Methods. 2012;91(1):80-88. https://doi.org/10.1016/j.mimet.2012.07.008
  14. Paul NC, Yu SH. Endophytic fungi from medicinal plants in Korea. Saarbrucken, Germany: Lap Lambert Academic Publishing; 2011.
  15. Kim CK, Eo JK, Eom AH. Diversity and seasonal variation of endophytic fungi isolated from three conifers in Mt. Taehwa, Korea. Mycobiology. 2013; 41(2):82-85. https://doi.org/10.5941/MYCO.2013.41.2.82
  16. Min YJ, Park MS, Fong JJ, et al. Diversity and saline resistance of endophytic fungi associated with Pinus thunbergii in coastal shelterbelts of Korea. J Microbiol Biotechnol. 2014;24(3):324-333. https://doi.org/10.4014/jmb.1310.10041
  17. You YH, Park JM, Seo YG, et al. Distribution, characterization, and diversity of the endophytic fungal communities on Korean seacoasts showing contrasting geographic conditions. Mycobiology. 2017;45(3):150-159. https://doi.org/10.5941/MYCO.2017.45.3.150
  18. Eo JK, Park H, Eom AH. Diversity of endophytic fungi isolated from Pinus densiflora and Juniperus rigida distributed in Mt. Baekryeonsan and Mt. Johangsan, Korea. Korean J Mycol. 2018;46(4): 437-446. https://doi.org/10.4489/KJM.20180048
  19. Eo JK, Eom AH. Diversity of foliar endophytic fungi inhabiting coniferous trees in Korea. Korean J Mycol. 2018;46(3):205-211. https://doi.org/10.4489/KJM.20180036
  20. Jung JY, Lee SH, Kim JM, et al. Metagenomic analysis of Kimchi, a traditional Korean fermented food. Appl Environ Microbiol. 2011;77(7): 2264-2274. https://doi.org/10.1128/AEM.02157-10
  21. Oh SY, Fong JJ, Park MS, et al. Identifying airborne fungi in Seoul, Korea using metagenomics. J Microbiol. 2014;52(6):465-472. https://doi.org/10.1007/s12275-014-3550-1
  22. Cha S, Srinivasan S, Jang JH, et al. Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during December 2014, Asian dust event. PLOS One. 2017;12(1):e0170693. https://doi.org/10.1371/journal.pone.0170693
  23. Kim H, Kim H, Hwang HS, et al. Metagenomic analysis of the marine coastal invertebrates of South Korea as assessed by Ilumina MiSeq. Anim Cells Syst. 2017;21(1):37-44. https://doi.org/10.1080/19768354.2016.1271012
  24. You Y, Kwon EJ, Choi S, et al. Vaginal microbiome profiles of pregnant women in Korea using a 16S metagenomics approach. Am J Reprod Immunol. 2019;82(1):e13124. https://doi.org/10.1111/aji.13124
  25. Zhao CC, Eun JB. Shotgun metagenomics approach reveals the bacterial community and metabolic pathways in commercial Hongeo product, a traditional Korean fermented skate product. Food Res Int. 2020;131:109030. https://doi.org/10.1016/j.foodres.2020.109030
  26. Kim CS, Jo JW, Lee H, et al. Comparison of soil higher fungal communities between dead and living Abies koreana in Mt. Halla, the Republic of Korea. Mycobiology. 2020;48(5):364-372. https://doi.org/10.1080/12298093.2020.1811193
  27. Kubono T, Ito S. Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience. 2002;43(3):255-260. https://doi.org/10.1007/S102670200037
  28. Kim KH, Choi YJ, Seo ST, et al. Raffaelea quercusmongolicae sp. nov. associated with Platypus koryoensis on oak in Korea. Mycotaxon. 2009;110(1): 189-197. https://doi.org/10.5248/110.189
  29. Toju H, Tanabe AS, Yamamoto S, et al. Highcoverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One. 2012;7(7):e40863. https://doi.org/10.1371/journal.pone.0040863
  30. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  31. Li W, Fu L, Niu B, et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 2012;13(6):656-668. https://doi.org/10.1093/bib/bbs035
  32. Li W, Chang Y. CD-HIT-OTU-MiSeq, an improved approach for clustering and analyzing paired end MiSeq 16S rRNA sequences. BioRxiv. 2017. [Preprint]. Available from: https://www.biorxiv.org/content/early/2017/06/22/153783
  33. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5): 335-336. https://doi.org/10.1038/nmeth.f.303
  34. Abarenkov K, Nilsson HR, Larsson KH, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol. 2010;186(2):281-285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
  35. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
  36. Zhao Y, Xiong Z, Wu G, et al. Fungal endophytic communities of two wild rosa varieties with different powdery mildew susceptibilities. Front Microbiol. 2018;9:2462. https://doi.org/10.3389/fmicb.2018.02462
  37. Moler ERV, Aho K. Whitebark pine foliar fungal endophyte communities in the Southern Cascade Range, USA: host mycobiomes and white pine blister rust. Fungal Ecol. 2018;33:104-114. https://doi.org/10.1016/j.funeco.2018.02.003
  38. Unterseher M, Persoh D, Schnittler M. Leaf-inhabiting endophytic fungi of European beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Divers. 2013;60(1):43-54. https://doi.org/10.1007/s13225-013-0222-0
  39. Abdelfattah A, Wisniewski M, Nicosia MGLD, et al. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs. PLOS One. 2016;11(8):e0160470. https://doi.org/10.1371/journal.pone.0160470
  40. Kurandawad JM, Lakshman HC. Diversity of the endophytic fungi isolated from Acalypha indica Linn - a promising medicinal plant. Int J Sci Res Publ. 2014;4(4):1-7.
  41. Mishra A, Gond SK, Kumar A, et al. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol. 2012;64(2):388-398. https://doi.org/10.1007/s00248-012-0029-7
  42. Park YH, Lee SG, Ahn DJ, et al. Diversity of fungal endophytes in various tissues of Panax ginseng Meyer cultivated in Korea. J Ginseng Res. 2012; 36(2):211-217. https://doi.org/10.5142/jgr.2012.36.2.211
  43. Gazis R, Chaverri P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol. 2010; 3(3):240-254. https://doi.org/10.1016/j.funeco.2009.12.001
  44. Persoh D, Melcher M, Flessa F, et al. First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol. 2010;114(7): 585-596. https://doi.org/10.1016/j.funbio.2010.04.009
  45. Khan AR, Waqas M, Ullah I, et al. Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot. 2017;135:126-135. https://doi.org/10.1016/j.envexpbot.2016.03.005
  46. Cleary M, Nguyen D, Marciulyniene D, et al. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment. Sci Rep. 2016;6(1):21895. https://doi.org/10.1038/srep21895
  47. Ragazzi A, Moricca S, Capretti P, et al. Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol Mediterr. 2001;40: 165-171.
  48. He X, Han G, Lin Y, et al. Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res. 2012;27(2):273-284. https://doi.org/10.1007/s11284-011-0898-0
  49. Bejarano NV, Carrillo L. Fungal endophytes in sweet orange Citrus sinensis (L.) Osbeck in Jujuy-Argentina. Asian J Agric Food Sci. 2016;4(1): 54-59.
  50. Naik BS, Shashikala J, Krishnamurthy YL. Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res. 2009;164(3):290-296. https://doi.org/10.1016/j.micres.2006.12.003
  51. Larran S, Perello A, Sim on MR, et al. The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol. 2007;23(4):565-572. https://doi.org/10.1007/s11274-006-9266-6
  52. Reiher DBA. Leaf-inhabiting endophytic fungi in the canopy of the Leipzig Floodplain Forest [Ph.D Thesis]. Germany: University of Leipzig; 2011.
  53. Davydenko K, Vasaitis R, Stenlid J, et al. Fungi in foliage and shoots of Fraxinus excelsior in Eastern Ukraine: a first report on Hymenoscyphus pseudoalbidus. For Path. 2013;43(6):462-467. https://doi.org/10.1111/efp.12055
  54. Albrectsen BR, Bjorken L, Varad A, et al. Endophytic fungi in European aspen (Populus tremula) leaves-diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers. 2010;41(1):17-28. https://doi.org/10.1007/s13225-009-0011-y
  55. Fisher PJ, Petrini O, Scott HML. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol. 1992;122(2):299-305. https://doi.org/10.1111/j.1469-8137.1992.tb04234.x
  56. Parsa S, Garcia-Lemos AM, Castillo K, et al. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol. 2016;120(5):783-790. https://doi.org/10.1016/j.funbio.2016.01.017
  57. Powthong P, Jantrapanukorn B, Thongmee A, et al. Screening of antimicrobial activities of the endophytic fungi isolated from Sesbania grandiflora (L.) Pers. J Agric Sci Technol. 2013;15: 1513-1522.
  58. Verma VC, Gond SK, Kumar A, et al. The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (neem) from Varanasi (India). Microb Ecol. 2007;54(1):119-125. https://doi.org/10.1007/s00248-006-9179-9
  59. Rateb ME, Ebel R. Secondary metabolites of fungi from marine habitats. Nat Prod Rep. 2011;28(2): 290-344. https://doi.org/10.1039/c0np00061b
  60. Jiang Q, Wei N, Huo Y, et al. Secondary metabolites of the endophytic fungus Cladosporium sp. CYC38. Chem Nat Compd. 2020;56(6):1166-1169. https://doi.org/10.1007/s10600-020-03257-y
  61. Amirita A, Sindhu P, Swetha J, et al. Enumeration of endophytic fungi from medicinal plants and screeening of extracellular enzymes. World J Sci Tech. 2012;2(2):13-19.
  62. Patil MG, Pagare J, Patil SN, et al. Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int J Curr Microbiol Appl Sci. 2015;4(3):1035-1042.
  63. Zhang D, Spadaro D, Garibaldi A, et al. Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biol Control. 2010; 54(3):172-180. https://doi.org/10.1016/j.biocontrol.2010.05.003
  64. Mari M, Martini C, Guidarelli M, et al. Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains. Biol Control. 2012;60(2):132-140. https://doi.org/10.1016/j.biocontrol.2011.10.013
  65. Francesco AD, Foggia MD, Baraldi E. Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits. Food Microbiol. 2020;87:103395. https://doi.org/10.1016/j.fm.2019.103395
  66. Schena L, Nigro F, Pentimone I, et al. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol. 2003;30(3):209-220. https://doi.org/10.1016/S0925-5214(03)00111-X
  67. Francesco AD, Ugolini L, Lazzeri L, et al. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control. 2015;81:8-14. https://doi.org/10.1016/j.biocontrol.2014.10.004
  68. Francesco AD, Zajc J, Gunde-Cimerman N, et al. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World J Microbiol Biotechnol. 2020;36(11):171. https://doi.org/10.1007/s11274-020-02947-7
  69. Agirman B, Erten H. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases. Yeast. 2020;37(9-10):437-448. https://doi.org/10.1002/yea.3501
  70. Francesco AD, Milella F, Mari M, et al. A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biol Control. 2017;114: 144-149. https://doi.org/10.1016/j.biocontrol.2017.08.010
  71. Miles LA, Lopera CA, Gonzalez S, et al. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl. 2012;57(5):697-710. https://doi.org/10.1007/s10526-012-9442-6
  72. Francesco AD, Foggia MD, Corbetta M, et al. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains. J Plant Growth Regul. 2021;40:1233-1244. https://doi.org/10.1007/s00344-020-10184-3
  73. Wachowska U, Glowacka K. Antagonistic interactions between Aureobasidium pullulans and Fusarium culmorum, a fungal pathogen of winter wheat. BioControl. 2014;59(5):635-645. https://doi.org/10.1007/s10526-014-9596-5
  74. Rusin C, Francesco AD, Foggia MD, et al. An emerging problem affecting apple production: Neofusicoccum parvum. Aureobasidium pullulans L1 and L8 strains as an alternative control strategy. Biol Control. 2019;134:157-162. https://doi.org/10.1016/j.biocontrol.2019.04.015
  75. Andreea C, Gimenez-Marino C, Cabrera Y, et al. Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Int J Agric Crop Sci. 2014;7(15): 1497-1503.
  76. Khan AL, Al-Harrasi A, Al-Rawahi A, et al. Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One. 2016;11(6): e0158207. https://doi.org/10.1371/journal.pone.0158207
  77. Cho SE, Lee DH, Wingfield MJ, et at. Ceratocystis quercicola sp. nov. from Quercus variabilis in Korea. Mycobiology. 2020;48(4):245-251. https://doi.org/10.1080/12298093.2020.1766649