Acknowledgement
This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea [grant number NIBR202002104 and NIBR202102107].
References
- Planchot V, Colonna P, Gallant DJ, et al. Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J Cereal Sci. 1995;21(2):163-171. https://doi.org/10.1016/0733-5210(95)90032-2
- Hrmova M, Biely P, VrsAnska M. Cellulose-and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme Microb Technol. 1989; 11(9):610-616. https://doi.org/10.1016/0141-0229(89)90090-2
- de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65(4):497-522. https://doi.org/10.1128/MMBR.65.4.497-522.2001
- Scheckermann C, Wagner F, Fischer L. Galactosylation of antibiotics using the β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol. 1997;20(8):629-634. https://doi.org/10.1016/S0141-0229(96)00211-6
- Yang L, Lubeck M, Lubeck PS. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev. 2017;31(1):33-49. https://doi.org/10.1016/j.fbr.2016.11.001
- Geiser DM, Klich MA, Frisvad JC, et al. The current status of species recognition and identification in Aspergillus. Stud Mycol. 2007;59:1-10. https://doi.org/10.3114/sim.2007.59.01
- Balajee SA, Houbraken J, Verweij PE, et al. Aspergillus species identification in the clinical setting. Stud Mycol. 2007;59:39-46. https://doi.org/10.3114/sim.2007.59.05
- Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141-173. https://doi.org/10.1016/j.simyco.2014.07.004
- Houbraken J, Kocsube S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5-169. https://doi.org/10.1016/j.simyco.2020.05.002
- Kim HJ, Kim JS, Cheon KH, et al. Species list of Aspergillus, Penicillium and Talaromyces in Korea, Based on one fungus one name system. Kor J Mycol. 2016;44(4):207-219. https://doi.org/10.4489/KJM.2016.44.4.207
- Oh JY, Mannaa M, Han GD, et al. First report of Aspergillus awamori as a fungal pathogen of garlic (Allium sativum L.). Crop Prot. 2016;85:65-70. https://doi.org/10.1016/j.cropro.2016.03.019
- Kim KM, Lim J, Lee JJ, et al. Characterization of Aspergillus sojae isolated from meju, Korean traditional fermented soybean brick. J Microbiol Biotechnol. 2017;27(2):251-261. https://doi.org/10.4014/jmb.1610.10013
- Nguyen TT, Pangging M, Bangash NK, et al. Five new records of the family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium fluviserpens, and P. scabrosum. Mycobiology. 2020;48(2):81-94. https://doi.org/10.1080/12298093.2020.1726563
- National List of Species of Korea. 2019. National Institute of Biological Resources. [Internet] [cited 2021 Mar 5]. Available from: http://kbr.go.kr.
- Kim JD. Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology. 2003;31(3):157-161. https://doi.org/10.4489/MYCO.2003.31.3.157
- Kim DH, Kim SH, Kim YK, et al. Reidentification of Aspergillus spp. isolated from clinical specimens of patients suspected as pulmonary aspergillosis in Korea. Korean J Med Mycol. 2009;14(3):133-144.
- Hong SB, Kim DH, Park IC, et al. Isolation and identification of Aspergillus section Fumigati strains from arable soil in Korea. Mycobiology. 2010;38(1):1-6. https://doi.org/10.4489/MYCO.2010.38.1.001
- Lee S, Park MS, Lim YW. Diversity of marine-derived Aspergillus from tidal mudflats and sea sand in Korea. Mycobiology. 2016;44(4):237-247. https://doi.org/10.5941/MYCO.2016.44.4.237
- Hong SB, Lee M, Kim DH, et al. Aspergillus cibarius sp. nov., from traditional meju in Korea. J Microbiol. 2012;50(4):712-714. https://doi.org/10.1007/s12275-012-2347-3
- Yang S, Choi SJ, Kwak J, et al. Aspergillus oryzae strains isolated from traditional Korean nuruk: fermentation properties and influence on rice wine quality. Food Sci Biotechnol. 2013;22(2):425-432. https://doi.org/10.1007/s10068-013-0097-6
- Kim HR, Kim JH, Bai DH, et al. Identification and characterization of useful fungi with α-amylase activity from the Korean traditional nuruk. Mycobiology. 2011;39(4):278-282. https://doi.org/10.5941/MYCO.2011.39.4.278
- Hong SB, Shin HD, Hong J, et al. New taxa of Neosartorya and Aspergillus in Aspergillus section Fumigati. Antonie Van Leeuwenhoek. 2008;93(1-2):87-98. https://doi.org/10.1007/s10482-007-9183-1
- Coats VC, Rumpho ME. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol. 2014;5:368.
- Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil. 2014;376(1-2):1-29. https://doi.org/10.1007/s11104-013-1921-8
- Wijeratne EK, Turbyville TJ, Zhang Z, et al. Cytotoxic constituents of Aspergillus terreus from the rhizosphere of Opuntia versicolor of the Sonoran Desert. J Nat Prod. 2003;66(12): 1567-1573. https://doi.org/10.1021/np030266u
- Jain R, Saxena J, Sharma V. Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol. 2012;62(2):725-735. https://doi.org/10.1007/s13213-011-0312-8
- Islam S, Akanda AM, Sultana F, et al. Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Arch Phytopathol. 2014;47(10):1231-1238. https://doi.org/10.1080/03235408.2013.837633
- Pandya ND, Desai PV, Jadhav HP, et al. Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat, India. Environ Sustain. 2018;1(3):245-252. https://doi.org/10.1007/s42398-018-0025-z
- He W, Xu Y, Fu P, et al. Cytotoxic indolyl diketopiperazines from the Aspergillus sp. GZWMJZ-258, endophytic with the medicinal and edible plant Garcinia multiflora. J Agric Food Chem. 2019; 67(38):10660-10666. https://doi.org/10.1021/acs.jafc.9b04254
- Orfali R, Perveen S. Secondary metabolites from the Aspergillus sp. in the rhizosphere soil of Phoenix dactylifera (Palm tree). BMC Chem. 2019; 13(1):1-6. https://doi.org/10.1186/s13065-019-0516-8
- Tavakol Noorabadi M, Babaeizad V, Zare R, et al. Isolation, Molecular identification, and mycotoxin production of Aspergillus species isolated from the rhizosphere of sugarcane in the South of Iran. Toxins. 2020;12(2):122. https://doi.org/10.3390/toxins12020122
- Park MS, Lee JW, Kim SH, et al. Penicillium from rhizosphere soil in terrestrial and coastal environments in South Korea. Mycobiology. 2020;48(6): 431-442. https://doi.org/10.1080/12298093.2020.1823611
- Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin S, Schilperoort R, editors. Plant molecular biology manual. Dordrecht: Kluwer Academic; 1994.
- Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- Hong SB, Go SJ, Shin HD, et al. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97(6):1316-1329. https://doi.org/10.1080/15572536.2006.11832738
- Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;97(3):659-666. https://doi.org/10.1080/15572536.2006.11832796
- Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016; 54(10):646-654. https://doi.org/10.1007/s12275-016-6324-0
- Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054
- Visagie CM, Hirooka Y, Tanney JB, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014;78:63-139. https://doi.org/10.1016/j.simyco.2014.07.002
- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-780. https://doi.org/10.1093/molbev/mst010
- Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22(21):2688-2690. https://doi.org/10.1093/bioinformatics/btl446
- Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Paper presented at: SC10 workshop on gateway computing environments (GCE10), New Orleans, LA; 2010. p. 1-8.
- Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London: Methuen; 1978.
- Varga J, Houbraken J, Van Der Lee HA, et al. Aspergillus calidoustus sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. Eukaryot Cell. 2008;7(4):630-638. https://doi.org/10.1128/EC.00425-07
- Peterson SW. Phylogenetic analysis of Aspergillus sections Cremei and Wentii, based on ribosomal DNA sequences. Mycol Res. 1995;99(11): 1349-1355. https://doi.org/10.1016/S0953-7562(09)81220-3
- Novakova A, Hubka V, Saiz-Jimenez C, et al. Aspergillus baeticus sp. nov. and Aspergillus thesauricus sp. nov., two species in section Usti from Spanish caves. Int J Syst Evol Microbiol. 2012; 62(Pt 11):2778-2785. https://doi.org/10.1099/ijs.0.041004-0
- Yoo SJ, Shin DJ, Won HY, et al. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology. 2018;46(2):147-153. https://doi.org/10.1080/12298093.2018.1475370
- Slack GJ. Identification of secondary metabolites from some Eurotium species, Aspergillus insuetus and A. calidoustus from Canadian homes. Ottawa, Canada: Carleton University; 2008.
- dos Reis Celestino J, de Carvalho LE, da Paz Lima M, et al. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem. 2014;49(4):569-575. https://doi.org/10.1016/j.procbio.2014.01.018
- Rodrigues de Carvalho C, Vieira MDLA, Cantrell CL, et al. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus. Nat Prod Res. 2016; 30(4):478-481. https://doi.org/10.1080/14786419.2015.1022777
- Samson RA, Mouchacca J. Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek. 1975;41(3):343-351. https://doi.org/10.1007/BF02565069
- Ogawa A, Murakami C, Kamisuki S, et al. Pseudodeflectusin, a novel isochroman derivative from Aspergillus pseudodeflectus a parasite of the sea weed, Sargassum fusiform, as a selective human cancer cytotoxin. Bioorg Med Chem Lett. 2004; 14(13):3539-3543. https://doi.org/10.1016/j.bmcl.2004.04.050
- Houbraken J, Due M, Varga J, et al. Polyphasic taxonomy of Aspergillus section Usti. Stud Mycol. 2007;59:107-128. https://doi.org/10.3114/sim.2007.59.12
- Romero SM, Comerio RM, Barrera VA, et al. Aspergillus fuscicans (Aspergillaceae, Eurotiales), a new species in section Usti from Argentinean semi-arid soil. Phytotaxa. 2018;343(1):67-74. https://doi.org/10.11646/phytotaxa.343.1.6
- Bidochka MJ, Menzies FV, Kamp AM. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol. 2002;178(6): 531-537. https://doi.org/10.1007/s00203-002-0490-7
- Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol. 2004;311(1):1-9. https://doi.org/10.1016/j.jembe.2003.12.028
- Samson RA, Varga J, Meijer M, et al. New taxa in Aspergillus section Usti. Stud Mycol. 2011;69(1): 81-97. https://doi.org/10.3114/sim.2011.69.06
- Mehrotra B, Prasad R. Aspergillus dimorphicus and Emericella cleisto-minuta spp. nov. from Indian soils. Trans Brit Mycol Soc. 1969;52(2):331-336. https://doi.org/10.1016/s0007-1536(69)80047-1
- Tuthill DE, Christensen M. Aspergillus sepultus, a new species in the Aspergillus ochraceus group. Mycologia. 1986;78(3):475-477. https://doi.org/10.2307/3793053
- Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol. 2017;8:2536. https://doi.org/10.3389/fmicb.2017.02536
- Visagie CM, Houbraken J. Updating the taxonomy of Aspergillus in South Africa. Stud Mycol. 2020; 95:253-292. https://doi.org/10.1016/j.simyco.2020.02.003
- Xu R, Xu GM, Li XM, et al. Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar Drugs. 2015;13(11): 7040-7054. https://doi.org/10.3390/md13117040
- Rodarte MP, Dias DR, Vilela DM, et al. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Sci Agron. 2011;33(3):457-464.
- Noor SO, Al-Zahrani DA, Hussein RM, et al. Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Arch Microbiol. 2020; 202(9):1-9. https://doi.org/10.1007/s00203-019-01730-z
- Pattnaik SS, Busi S. Rhizospheric fungi: diversity and potential biotechnological applications, in recent advancement in white biotechnology through fungi. In: Yadav A, Mishra S, Singh S, Gupta A, editors. Recent advancement in white biotechnology through fungi. Fungal biology. Cham, Switzerland: Springer; 2019. p. 63-84.
- Wu N, Li Z, Wu F, et al. Microenvironment and microbial community in the rhizosphere of dioecious Populus cathayana at Chaka Salt Lake. J Soils Sediments. 2019;19(6):2740-2751. https://doi.org/10.1007/s11368-019-02263-0