과제정보
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2018R1A2B6003921) and also was partially supported by the Ministry of Trade, Industry & Energy (#20003524).
참고문헌
- P. Ramm, A. Klumpp, R. Merkel, J. Weber, R. Wieland, A. Ostmann, and J. Wolf, "3D System Integration Technologies", Mat. Res. Soc. Symp. Proc., 766, E5.6.1 (2003)/
- S. E. Kim, and S. Kim, "Wafer level Cu-Cu direct bonding for 3D integration", Microelectron. Eng., 137, 158-163 (2015)/ https://doi.org/10.1016/j.mee.2014.12.012
- H. Seo, H. Park, and S. E. Kim, "Cu-SiO2 Hybrid Bonding", J. Microelectron. Packag. Soc., 27(1), 17-24 (2020)/
- K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, "3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration", Proc. IEEE, 89(5), 602-633 (2001)/ https://doi.org/10.1109/5.929647
- K. N. Chen, C. S. Tan, A. Fan, and R. Reif, "Copper Bonded Layers Analysis and Effects of Copper Surface Conditions on Bonding Quality for Three-Dimensional Integration", J. Electron. Mater., 34(12), 1464-1467 (2005)/ https://doi.org/10.1007/s11664-005-0151-0
- B. Rebhan, and K. Hingerl, "Physical mechanisms of copper-copper wafer bonding", J. Appl. Phys., 118(13), 135301 (2015). https://doi.org/10.1063/1.4932146
- Y. M. Lin, C. J. Zhan, K. S. Kao, C. W. Fan, S. C. Chung, Y. W. Huang, S. Y. Huang, J. Y. Chang, T. F. Yang, J. H. Lau, and T. H. Chen, "Low Temperature Bonding using Non-conductive adhesive for 3D chip stacking with 30um-Pitch Micro Solder Bump Interconnections", IEEE 6th IMPACT, 478-481 (2011).
- Y. Kim, S. Park, and S. E. Kim, "Effect of Ag Nanolayer in Low Temperature Cu/Ag-Ag/Cu Bonding", J. Microelectron. Packag. Soc., 28(2), 59-64 (2021). https://doi.org/10.6117/KMEPS.2021.28.2.059
- S. Bonam, A. K. Panigrahi, C. H. Kumar, S. R. K. Vanjari, and S. G. Singh, "Interface and Reliability Analysis of Au-Passivated Cu-Cu Fine-Pitch Thermocompression Bonding for 3-D IC Applications", IEEE Trans. Comp. Packag. Manufact. Technol., 9(7), 1227-1234 (2019). https://doi.org/10.1109/tcpmt.2019.2912891
- Y. P. Huang, Y. S. Chien, R. N. Tzeng, and K. N. Chen, "Demonstration and Electrical Performance of Cu-Cu Bonding at 150o C With Pd Passivation", IEEE Trans. Electron Devices, 62(8), 2587-2592 (2015). https://doi.org/10.1109/TED.2015.2446507
- Y. P. Huang, Y. S. Chien, R. N. Tzeng, M. S. Shy, T. H. Lin, K. H. Chen, C. T. Chiu, J. C. Chiou, C. T. Chuang, W. Hwang, H. M. Tong, and K. N. Chen, "Novel Cu-to-Cu Bonding With Ti Passivation at 180℃ in 3-D Integration", IEEE Electron Dev. Lett., 34(12), 1551-1553 (2013). https://doi.org/10.1109/LED.2013.2285702
- K. Panigrahi, S. Bonam, T. Ghosh, S. G. Singh, and S. R. K. Vanjari, "Ultra-thin Ti Passivation mediated breakthrough in high quality Cu-Cu bonding at Low Temperature and pressure", Mater. Lett., 169, 269-272 (2016). https://doi.org/10.1016/j.matlet.2016.01.126
- K. Panigrahi, S. Bonam, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "High quality fine-pitch Cu-Cu Wafer-on-Wafer bonding with optimized Ti passivation at 160℃", 2016 IEEE 66th ECTC, 1791-1796 (2016).
- K. Panigrahi, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "Demonstration of sub 150℃ Cu-Cu thermocompression bonding for 3D IC applications, utilzing an ultra-thin layer of Manganin alloy as an effective surface passivation layer", Mater. Lett., 194, 86-89 (2017). https://doi.org/10.1016/j.matlet.2017.02.041
- K. Panigrahi, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "Oxidation Resistive, CMOS Compatible Copper-Based Alloy Ultrahin Films as a Superior Passivation Mechanism for Achieving 150℃ Cu-Cu Wafer on Wafer Thermocompression Bonding", IEEE Trans. Electron Devices, 64(3), 1239-1245 (2017). https://doi.org/10.1109/TED.2017.2653188
- R. Gao, J. Li, Y. A. Shen, and H. Nishikawa, "A Cu-Cu Bonding Method Using Preoxidized Cu Microparticles under Formic Acid Atmosphere", 2019 IEEE ICEP, 159-162 (2019).
- W. F. Gale, and T. C. Totemeir, "Smithells Metals Reference Book", Elsevier (2013).
- S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, "Effect of Annealing Ambient on the Self-Formation Mechnism of Diffusion Barrier Layer Used in Cu(Ti) Interconnects", J. Electron. Mater., 36(3), 258-265 (2007). https://doi.org/10.1007/s11664-007-0094-8
- E. Gemelli, N. H. A. Camargo, "Oxidation kinetics of commercially pure titanium", Revista Materia, 12(3), 525-531 (2007). https://doi.org/10.1590/S1517-70762007000300014
- Y. Iijima, K. Hoshino, and K. I. Hirano, "Diffusion of Titanium in Copper", Metall. Trans. A 8.6, 997-1001 (1977). https://doi.org/10.1007/BF02661585
- Taguchi, and Y. Iijima, "Diffusion of copper, silver and gold in α-titanium", Philos. Mag. A, 72(6), 1649-1655 (1995). https://doi.org/10.1080/01418619508243935
- H. Mehrer, "Diffusion in Solid: fundamentals, methods, materials, diffusion-controlled processes", Springer Science and Business Media, 155 (2007).
- S. Bokstein, V. I. Vunkov, E. V. Golosov, M. I. Karpov, Y. R. Kolobov, D. A. Kolesnikov, V. P. Korzhov, and A. O. Rodin, "Structure and Diffusion Processes in Laminated Composites of a Cu-Ti System", Russ. Phys. J., 52(8), 811-815 (2009). https://doi.org/10.1007/s11182-010-9313-5
- K. Y. Lim, Y. S. Lee, Y. D. Chung, I. W. Lyo, C. N. Whang, J. Y. Won, and H. J. Kang, "Grain Boundary Diffusion of Cu in TiN Film by X-ray Photoelectron Spectroscopy", Appl. Phys. A, 70(4), 431-434 (2000). https://doi.org/10.1007/s003390051062
- Q. Jiang, S. H. Zhang, and J. C. Li, "Grain Size-dependent Diffusion Activation Energy in Nanomaterials", Solid State Commun., 130(9), 581-584 (2004). https://doi.org/10.1016/j.ssc.2004.03.033