DOI QR코드

DOI QR Code

Experimental and numerical study on strength and deformation behaviors of sandstone with intersecting flaws

  • Xiong, Fei (School of Civil Engineering, Chongqing University) ;
  • Liu, Xinrong (School of Civil Engineering, Chongqing University) ;
  • Lin, Guangyi (School of Civil Engineering, Chongqing University) ;
  • Zhou, Xiaohan (School of Civil Engineering, Chongqing University) ;
  • Liu, Dongshuang (School of Civil Engineering, Chongqing University) ;
  • Xu, Bin (School of Civil Engineering, Chongqing University) ;
  • Han, Yafeng (School of Civil Engineering, Chongqing University) ;
  • He, Chunmei (College of Architectural Engineering, Neijiang Normal University) ;
  • Wang, Zijuan (School of Management Science and Engineering, Chongqing Technology and Business University)
  • 투고 : 2020.11.20
  • 심사 : 2021.09.24
  • 발행 : 2021.09.25

초록

The distribution pattern of flaws has a significant impact on the mechanical behavior of the rock. To understand the cracking mechanism of the rock with intersecting flaws, the cracking behavior of sandstone containing two intersecting flaws under uniaxial compression was investigated through laboratory tests and particle flow code (PFC2D). The strength and failure characteristics of sandstone with intersecting flaws were studied. Subsequently, the evolution of the stress fields and displacement fields were analyzed, and the cracking mechanism of intersecting flaws was discussed. The results showed that the peak stress and average modulus decrease with increasing intersecting angle 𝛼 of intersecting flaws in both experiments and numerical simulation. The experimental peak stress shows an increasing tendency, while the experimental average modulus first increases and then decreases with increasing direction angle 𝛽, which is slightly different from simulation results. The cracking mode of the intersecting flaws was determined by angles 𝛼 and 𝛽. Specifically, when 𝛼 and 𝛽 were small, the main fracture surfaces formed at the inner and outer tips of one flaw. When 𝛼 and 𝛽 were large, the main fracture surfaces formed at the outer tips of the two flaws. The variation in the high tensile stress zone with 𝛼 and 𝛽 is the essential reason for the change in cracking modes with 𝛼 and 𝛽. In addition, a new type of displacement field (defined as DF_IV) related to crack initiation was found. In this type of displacement field, the displacement difference is the main cause of cracking.

키워드

과제정보

This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1504802), the National Natural Science Foundation of China (Grant No. 41972266), the Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYS21029) and Basic Research and Frontier Exploration Project of Chongqing in 2018 (Grant No. cstc2018jcyjAX0453).

참고문헌

  1. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
  2. Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6
  3. Cao, R.H., Cao, P., Lin, H., Pu, C.Z. and Ou, K. (2016), "Mechanical behavior of brittle rock-like specimens with preexisting flaws under uniaxial loading: Experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49(3), 763-783. https://doi.org/10.1007/s00603-015-0779-x.
  4. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  5. Cao, P., Liu, T.Y., Pu, C.Z. and Lin, H. (2015), "Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression", Eng. Geol., 187, 113-121. https://doi.org/10.1016/j.enggeo.2014.12.010.
  6. Colombo, D. and Massin, P. (2011), "Fast and robust level set update for 3D non-planar X-FEM crack propagation modeling", Comput. Meth. Appl. Mech. Eng., 200(25-28), 2160-2180. https://doi.org/10.1016/j.cma.2011.03.014.
  7. Cheng, Y., Jiao, Y.Y. and Tan, F. (2019), "Numerical and experimental study on the cracking behavior of marble with en-echelon flaws", Rock Mech. Rock Eng., 52(11), 4319-4338. https://doi.org/10.1007/s00603-019-01849-x.
  8. Carpinteri, A., Spagnoli, A., Vantadori, S. and Viappiani, D. (2008), "Influence of the crack morphology on the fatigue crack growth rate: A continuously-kinked crack model based on fractals", Eng. Fract. Mech., 75(3), 579-589. https://doi.org/10.1016/j.engfracmech.2007.05.007.
  9. Camones, L.A.M., Vargas, E.D., de Figueiredo, R.P. and Velloso, R.Q. (2013), "Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism", Eng. Geol., 153(2), 80-94. https://doi.org/10.1016/j.enggeo.2012.11.013.
  10. Guo, Q.Z., Su, H.J., Liu, J.W., Yin, Q., Jing, H.W. and Yu, L.Y. (2019), "An experimental study on the fracture behaviors of marble specimens subjected to high temperature treatment", Eng. Fract. Mech., 225, 106862. https://doi.org/10.1016/j.engfracmech.2019.106862.
  11. Han, G.S., Jing, H.W., Jiang, Y.J., Liu, R.C. and Wu, J.Y. (2020), "Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 53, 31-57. https://doi.org/10.1007/s00603-019-01866-w.
  12. Ingraffea, A.R. and Heuze, F.E. (1980), "Finite element models for rock fracture mechanics", Int. J. Numer. Anal. Meth. Geomech., 4(1), 25-43. https://doi.org/10.1002/nag.1610040103.
  13. Jing, H.W., Wu, J.Y., Yin, Q. and Wang, K. (2020), "Deformation and failure characteristics of anchorage structure of surrounding rock in deep roadway", Int. J. Min. Sci. Technol., 30(5), 593-604. https://doi.org/10.1016/j.ijmst.2020.06.003.
  14. Jing, H.W., Yin, Q., Yang, S.Q. and Chen, W.Q. (2021), "Micro-mesoscopic creep damage evolution and failure mechanism of sandy mudstone", Int. J. Geomech., 21(3), 04021010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001940.
  15. Kou, M.M., Liu, X.R., Tang, S.D. and Wang, Y.T. (2019), "3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396.
  16. Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fract., 10(4), 525-36. https://doi.org/10.1007/BF00155255.
  17. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  18. Lee, J. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
  19. Liu, B.L., Yang, H. Q., Karekal, S. (2020) "Effect of water content on argillization of mudstone during the tunnelling process", Rock Mech. Rock Eng., 53(2), 799-813. https://doi.org/10.1007/s00603-019-01947-w.
  20. Liu, X.W., Liu, Q.S., Liu, B., Zhu, Y.G. and Zhang, P.L. (2019) "Failure behavior for rock-like material with cross crack under biaxial compression", J. Mater. Civ. Eng., 31(2), 06018025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002540.
  21. Lotidis, M.A., Nomikos, P.P. and Sofianos, A.I. (2019), "Numerical study of the fracturing process in marble and plaster hollow plate specimens subjected to uniaxial compression", Rock Mech. Rock Eng., 52(11), 4361-4386. https://doi.org/10.1007/s00603-019-01884-8.
  22. Lv, H.Y., Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
  23. Manterola, J., Cabello, M., Zurbitu, J., Renart, J., Turon, A., Jumel, J. and Urresti, I. (2019), "Effect of the width-tothickness ratio on the mode I fracture toughness of flexible bonded joints", Eng. Fract. Mech., 218, UNSP 106584. https://doi.org/10.1016/j.engfracmech.2019.106584.
  24. Manouchehrian, A., Sharifzadeh, M. and Marji, M.F. and Gholamnejad J. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression", Arch. Civ. Mech. Eng., 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008.
  25. Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
  26. Potyondy, D.O. and Cundall PA. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8),1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  27. Petit, J. and Barquins, M. (1988), "Can natural faults propagate under mode II conditions", Tectonics, 7(6), 1246-1265. https://doi.org/10.1029/TC007i006p01243.
  28. Pizzati, M., Balsamo, F., Storti, F. and Iacumin, P. (2019), "Physical and chemical strain-hardening during faulting in poorly lithified sandstone: The role of kinematic stress field and selective cementation", Geol. Soc. Amer. Bull., 132(5-6), 1183-1200. https://doi.org/10.1130/B35296.1.
  29. Pizzati, M., Balsamo, F. and Storti, F. (2020), "Displacement-dependent microstructural and petrophysical properties of deformation bands and gouges in poorly lithified sandstone deformed at shallow burial depth (Crotone Basin, Italy)", J. Struct. Geol., 137, 104069. https://doi.org/10.1016/j.jsg.2020.104069.
  30. Sun, W.B., Du, H.Q., Zhou, F. and Shao, J.L. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
  31. Shen, B. (1995), "The mechanism of fracture coalescence in compression-experimental-study and numerical-simulation", Eng. Fract. Mech., 51(1), 73-85. https://doi.org/10.1016/0013-7944(94)00201-R.
  32. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
  33. Scholtes, L. and Donze, F. (2013), "A DEM model for soft and hard rocks: Role of grain interlocking on strength", J. Mech. Phys. Solids, 61(2), 352-369. https://doi.org/10.1016/j.jmps.2012.10.005.
  34. Song, Z.Y., Konietzky, H. and Herbst, M. (2019), "Three-dimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete", Constr. Build. Mater., 225, 661-677. https://doi.org/10.1016/j.conbuildmat.2019.07.260.
  35. Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled flaws under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541.
  36. Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part i: Experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8.
  37. Wong, L.N.Y. and Li, H.Q. (2013), "Numerical study on coalescence of two coplanar pre-existing flaws in rock", Int. J. Solids Struct., 50, 3685-3706. https://doi.org/10.1016/j.ijsolstr.2013.07.010.
  38. Wang, D.J., Tang, H.M., Elsworth, D. and Wang, C.Y. (2019), "Fracture evolution in artificial bedded rocks containing a structural flaw under uniaxial compression", Eng. Geol., 250, 130-141. https://doi.org/10.1016/j.enggeo.2019.01.011.
  39. Xiong, F., Jing, H.W., Su, H.J., Du, M.R., Yin, Q. and Han, G.S. (2017), "Strength and fracture behaviors of sandstone samples containing intersect fissures under uniaxial compression", J. China Coal Soc., 42(4), 886-895 (in Chinese). https://doi.org/10.13225 /j.cnki.jccs.2016.1695. https://doi.org/10.13225/j.cnki.jccs.2016.1695
  40. Yang, S.Q., Huang, Y.H., Jing, H.W. and Liu, X.R. (2014), "Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel flaws under uniaxial compression", Eng. Geol., 178, 28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
  41. Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single flaw under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  42. Yin, Q., Jing, H.W. and Zhu, T.T. (2016), "Mechanical behavior and failure analysis of granite specimens containing two orthogonal flaws under uniaxial compression", Arab. J. Geosci., 9(1), 31. https://doi.org/10.1007/s12517-015-2078-y.
  43. Yi, J.T., Liu, F., Zhang, T.B., Qiu, Z.Z. and Zhang, X.Y. (2021), "Determination of the ultimate consolidation settlement of jack-up spudcan footings embedded in clays", Ocean Eng., 236, 109509. https://doi.org/10.1016/j.oceaneng.2021.109509.
  44. Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z.
  45. Zhang, X.P. and Wong, L.N.Y. (2013), "Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression", Int. J. Fract., 180, 93-110. https://doi.org/10.1007/s10704-012-9803-2.
  46. Zhang, X.P. and Wong, L.N.Y. (2014), "Displacement field analysis for cracking processes in bonded-particle model", B. Eng. Geol. Environ., 73(1), 13-21. https://doi.org/10.1007/s10064-013-0496-1
  47. Zeng, W., Yang, S.Q. and Tian, W.L. (2018), "Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression", Eng. Fract. Mech., 200, 430-450. https://doi.org/10.1016/j.engfracmech.2018.08.016.
  48. Zhao, C., Zhou, Y.M., Zhao, C.F. and Bao, C. (2018), "Cracking processes and coalescence modes in rock-like specimens with two parallel pre-existing cracks", Rock Mech. Rock Eng., 51(11), 3377-3393. https://doi.org/10.1007/s00603-018-1525-y.
  49. Zhang, B., Li, S.C., Yang, X.Y., Xia, K.W., Liu, J.Y., Guo, S. and Wang, S.G. (2019), "The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression", Geomech. Eng., 17(1), 47-56. https://doi.org/ 10.12989/gae.2019.17.1.047.
  50. Zhou, Y., Zhao, D.J., Li, B., Wang, H.Y., Tang Q.Q. and Zhang, Z.Z. (2021), "Fatigue damage mechanism and deformation behaviour of granite under ultrahigh-frequency cyclic loading conditions", Rock Mech. Rock Eng., 54, 4723-4739. https://doi.org/10.1007/s00603-021-02524-w.