DOI QR코드

DOI QR Code

친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships

  • Kim, Sehwan (Korea Institute of Machinery & Materials) ;
  • Choi, Gilsu (Dept. of Electrical Engineering, Inha University) ;
  • Lee, Jae Suk (Dept. of Electrical Engineering, Jeonbuk National University)
  • 투고 : 2021.08.20
  • 심사 : 2021.09.08
  • 발행 : 2021.09.30

초록

본 논문에서는 친환경 선박용 전기추진시스템의 안전성 향상 기술개발 동향에 대해 조사하였다. 온실효과 및 탄소배출량 감축을 위해 친환경 전기선박에 대한 수요는 점차 늘어날 전망이다. 친환경 전기선박의 주요 구성요소 중 하나인 에너지 저장장치에는 에너지밀도와 효율이 높은 리튬이온 배터리가 일반적으로 사용된다. 하지만 리튬이온 배터리는 에너지 저장장치의 주요 화재원인 중 하나로 지목된다. 항해 중인 선박에 화재 발생 시, 화재진압을 위한 소방설비 및 소방작업이 제한되어 친환경 선박에서의 안전성 향상기술은 더욱 중요하다. 본 논문에서는 친환경 선박의 안전성 향상을 위한 전기추진모터 및 에너지저장장치에 적용되는 최신 기술에 대해 조사 및 분석을 진행하였다.

This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1013260).

참고문헌

  1. T. H. Joung et al., 2020, "The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050," Journal of International Maritime Safety, Environmental Affairs, and Shipping, Vol.4, No.1, pp.1-7, 2019. DOI: 10.1080/25725084.2019.1707938
  2. DNV GL, "Maritime Forecast to 2050," p.24, 2018.
  3. DNV GL, "Alternative Fuels in the Arctic (Norway-WWF)," p.30, 2019.
  4. G. Sulligoi, A. Vicenzutti, and R. Menis, "All-Electric Ship Design: From Electrical Propulsion to Integrated Electrical and Electronic Power Systems," IEEE Trans. Transport. Electrific., vol.2, no.4, 2016. DOI: 10.1109/TTE.2016.2598078
  5. C. Lewis, "The Advanced Induction Motor," IEEE Power Engineering Society Summer Meeting, vol.1, pp.250-253, 2002. DOI: 10.1109/PESS.2002.1043227
  6. https://www.gepowerconversion.com/product-solutions/induction-motors/large-slow-speed-marine-motors
  7. Rolls-Royce, "New Azimuthing Permanent Magnet Thruster," pp.2-4, 2019.
  8. Kim, Su-Nam, Park, Yeong-Ho. "DC Electric Propulsion Ship Technology Trend" The Korean Institute of Electrical Engineers, Vol.67, No.6, pp.25-31, 2018.
  9. J. W. Bennett, G. J. Atkinson, B. C. Mecrow, and D. J. Atkinson, "Fault-tolerant design considerations and control strategies for aerospace drives," IEEE Trans. Ind. Electron., vol. 59, no.5, pp.2049-2058, 2012. DOI: 10.1109/TIE.2011.2159356
  10. A. G. Jack, B. C. Mecrow, and J. A. Haylock, "A Comparative Study of Permanent Magnet and Switched Reluctance Motors for High-performance Fault-tolerant Applications," IEEE Trans. Ind. Appl., vol.32, no.4, pp.889-895, 1996. DOI: 10.1109/28.511646
  11. A. G. Jack, B. C. Mecrow, and J. A. Haylock, "A Comparative Study of Permanent Magnet and Switched Reluctance Motors for High-performance Fault-tolerant Applications," IEEE Trans. Ind. Appl., vol.32, no.4, pp.889-895, 1996. DOI: 10.1109/28.511646
  12. A. S. Abdel-Khalik, M. S. Hamad, A. M. Massoud, and S. Ahmed, "Postfault operation of a nine-phase six-terminal induction machine under single open-line fault," IEEE Trans. Ind. Electron., vol.65, no.2, pp.1084-1096, 2018. DOI: 10.1109/TIE.2017.2733471
  13. G. Sala, M. Mengoni, G. Rizzoli, M. Degano, L. Zarri, and A. Tani, "Impact of star connection layouts on the control of multiphase induction motor drives under open-phase fault," IEEE Trans. Power Electron., vol.36, no.4, pp.3717-3726, 2021. DOI: 10.1109/TPEL.2020.3024205
  14. K. Atallah, J. Wang, and D. Howe, "Torque-ripple minimization in modular permanent-magnet brushless machines," IEEE Trans. Ind. Appl., vol.39, no.6, pp.1689-1695, 2003. DOI: 10.1109/TIA.2003.818986
  15. G. J. Li, Z. Q. Zhu, M. P. Foster, D. A. Stone, and H. L. Zhan, "Modular permanent magnet machines with alternate teeth having tooth tips," IEEE Trans. Ind. Electron, vol.62, no.10, pp. 6120-6130, 2015. DOI: 10.1109/TIE.2015.2427112
  16. https://magneticsmag.com/ge-power-conversion-equips-navy-fleets-with-electric-propulsion-systems/
  17. JEUMONT Electric, "Power and Propulsion Systems," pp.2-3.
  18. Y. Shi, J. Wang, R. Hu, and B. Wang, "Electromagnetic and thermal behavior of a triple redundant 9-phase PMASynRM with insulation deterioration fault," IEEE Trans. Ind. Appl., vol.56, no.6, pp. 6374-6383, 2020. DOI: 10.1109/TIA.2020.3014274
  19. Z. Q. Zhu N. Pothi, P. L. Xu, and Y. Ren, "Uncontrolled generator fault protection of novel hybrid-excited doubly salient synchronous machine with field excitation current control," IEEE Trans. Ind. Appl., vol.55, no.4, pp.3598-3606, 2019. DOI: 10.1109/TIA.2019.2909492
  20. X. Xue, W. Zhao, J. Zhu, G. Liu, X. Zhu, and M. Cheng, "Design of five-phase modular flux-switching permanent-magnet machines for high reliability applications," IEEE Trans. Magn., vol.49, no.7, pp.3941-3944, 2013. DOI: 10.1109/TMAG.2013.2244201
  21. Sterling Plan B, CellCool Liquid Cooling, https://spbes.com/products/
  22. Corvus Energy, Corvus Energy products, https://corvusenergy.com/products/
  23. Sterling Plan B, Integrated racking, https://spbes.com/products/
  24. Hossam A. Gabbar, Ahmed M. Othman and Muhammad R. Abdussami, "Review of Battery Management Systems (BMS) Development and Industrial Standards," MDPI Technologies, 2021 DOI: 10.3390/technologies9020028
  25. Nick Flaherty, "Flow battery project to power ships," eeNewseurope, 2021.
  26. A. H. Whitehead, T. J. Rabbow, M. T rampert, P. Pokorny, "Critical safety features of the vanadium redox flow battery," Journal of Power Sources, Vol.351, pp.1-7, 2017. DOI: 10.1016/j.jpowsour.2017.03.075
  27. Han Shin, Kim Yu-jong, Heo Ji-hyang. "Vanadium Redox Flow Battery development and domestic demonstration," Journal of Electrical World Monthly Magazine, pp.48-54, 2014.