DOI QR코드

DOI QR Code

Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran

  • Rahimi, Ehsan (Environmental Sciences Research Institute, Shahid Beheshti University) ;
  • Barghjelveh, Shahindokht (Environmental Sciences Research Institute, Shahid Beheshti University) ;
  • Dong, Pinliang (Department of Geography and the Environment, University of North Texas)
  • Received : 2021.05.14
  • Accepted : 2021.07.26
  • Published : 2021.09.30

Abstract

Background: Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result: The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion: The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.

Keywords

References

  1. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol. 2012;3(2):327-38. https://doi.org/10.1111/j.2041-210X.2011.00172.x
  2. Bezerra ADM, Pacheco Filho AJ, Bomfim IG, Smagghe G, Freitas BM. Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agric Syst. 2019;169:49-57. https://doi.org/10.1016/j.agsy.2018.12.002
  3. Bradter U, Kunin WE, Altringham JD, Thom TJ, Benton TG. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol Evol. 2013;4(2):167-74. https://doi.org/10.1111/j.2041-210x.2012.00253.x
  4. Carrasco L, Papes M, Lochner EN, Ruiz BC, Williams AG, Wiggins GJ. Potential regional declines in species richness of tomato pollinators in North America under climate change. Ecol Appl. 2020:e02259.
  5. Celary W. Biology of the solitary ground-nesting bee Melitta leporina (Panzer, 1799)(Hymenoptera: Apoidea: Melittidae). J Kansas Entomol Soc. 2006;79(2):136-45. https://doi.org/10.2317/0022-8567(2006)79[136:BOTSGB]2.0.CO;2
  6. Challinor AJ, Ewert F, Arnold S, Simelton E, Fraser E. Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot. 2009;60(10):2775-89. https://doi.org/10.1093/jxb/erp062
  7. Christmann S, Aw-Hassan AA. Farming with alternative pollinators (FAP)-an overlooked win-win-strategy for climate change adaptation. Agric Ecosyst Environ. 2012;161:161-4. https://doi.org/10.1016/j.agee.2012.07.030
  8. Coope G. Insect faunas in ice age environments: why so little extinction. Extinction rates. 1995:55-74.
  9. Cushman SA, Wasserman TN. Landscape applications of machine learning: comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA, in: Machine Learning for Ecology and Sustainable Natural Resource Management, Springer. 2018. p. 185-203.
  10. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci. 2008;105(18):6668-72. https://doi.org/10.1073/pnas.0709472105
  11. Dew RM, Silva DP, Rehan SM. Range expansion of an already widespread bee under climate change. Global Ecology and Conservation. 2019;17:e00584. https://doi.org/10.1016/j.gecco.2019.e00584
  12. Dikmen F, Aytekin AM. Notes on the Halictus Latreille (Hymenoptera: Halictidae) fauna of Turkey. Turkish Journal of Zoology. 2011;35(4):537-50.
  13. Dormann CF, Schweiger O, Arens P, Augenstein I, Aviron S, Bailey D, et al. Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol Lett. 2008;11(3):235-44. https://doi.org/10.1111/j.1461-0248.2007.01142.x
  14. Elith J, Leathwick JR. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst. 2009;40:677-97. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  15. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802-13. https://doi.org/10.1111/j.1365-2656.2008.01390.x
  16. Fernandez M, Hamilton H, Kueppers L. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere. 2013;4(5):1-17. https://doi.org/10.1890/ES13-00049.1
  17. Giannini TC, Acosta AL, Garofalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL. Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model. 2012;244:127-31. https://doi.org/10.1016/j.ecolmodel.2012.06.035
  18. Giannini TC, Maia-Silva C, Acosta AL, Jaffe R, Carvalho AT, Martins CF, et al. Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie. 2017;48(6):784-94. https://doi.org/10.1007/s13592-017-0523-5
  19. Giannini TC, Costa WF, Borges RC, Miranda L, da Costa CPW, Saraiva AM, et al. Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Reg Environ Chang. 2020;20(1):1-12. https://doi.org/10.1007/s10113-020-01581-1
  20. Guisan A, Edwards TC Jr, Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model. 2002;157(2-3):89-100. https://doi.org/10.1016/S0304-3800(02)00204-1
  21. Guler Y, Bursali B. Megachile maritima (KIRBY) ve Icteranthidium cimbiciforme (SMITH)(Hymenoptera: Megachilidae) Turleri uzerinde Entomopalinolojik Bir Calisma. Uludag Aricilik Dergisi. 2008;8(1):30-5.
  22. Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, Totland O. How does climate warming affect plant-pollinator interactions? Ecol Lett. 2009;12(2):184-95. https://doi.org/10.1111/j.1461-0248.2008.01269.x
  23. Imbach P, Fung E, Hannah L, Navarro-Racines CE, Roubik DW, Ricketts TH, et al. Coupling of pollination services and coffee suitability under climate change. Proc Natl Acad Sci. 2017;114(39):10438-42. https://doi.org/10.1073/pnas.1617940114
  24. Jafarian Z, Kargar M, Bahreini Z. Which spatial distribution model best predicts the occurrence of dominant species in semi-arid rangeland of northern Iran? Ecological Informatics. 2019;50:33-42. https://doi.org/10.1016/j.ecoinf.2018.12.011
  25. Karlik P, Poschlod P. Soil seed-bank composition reveals the land-use history of calcareous grasslands. Acta Oecol. 2014;58:22-34. https://doi.org/10.1016/j.actao.2014.03.003
  26. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, et al. Climate change impacts on bumblebees converge across continents. Science. 2015;349(6244):177-80. https://doi.org/10.1126/science.aaa7031
  27. Kjohl M, Nielsen A, Stenseth NC. Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations (FAO). 2011.
  28. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci. 2007;274(1608):303-13. https://doi.org/10.1098/rspb.2006.3721
  29. Kosicki JZ. Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ Ecol Stat. 2020;27(2):273-92. https://doi.org/10.1007/s10651-020-00445-5
  30. Memmott J, Craze PG, Waser NM, Price MV. Global warming and the disruption of plant-pollinator interactions. Ecol Lett. 2007;10(8):710-7. https://doi.org/10.1111/j.1461-0248.2007.01061.x
  31. Milano NJ, Iverson AL, Nault BA, SH MA. Comparative survival and fitness of bumblebee colonies in natural, suburban, and agricultural landscapes. Agric Ecosyst Environ. 2019;284:106594. https://doi.org/10.1016/j.agee.2019.106594
  32. Miller J. Species distribution modeling. Geogr Compass. 2010;4(6):490-509. https://doi.org/10.1111/j.1749-8198.2010.00351.x
  33. Mohammadian H. Bees of Iran. Khatam (in Persian); 2003. p. 86.
  34. Naimi B, Araujo MB, Naimi MB, Naimi B, Araujo M. Package 'sdm'; 2016.
  35. Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321-6. https://doi.org/10.1111/j.1600-0706.2010.18644.x
  36. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Ipcc. 2014.
  37. Ploquin EF, Herrera JM, Obeso JR. Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia. 2013;173(4):1649-60. https://doi.org/10.1007/s00442-013-2731-7
  38. Polce C, Garratt MP, Termansen M, Ramirez-Villegas J, Challinor AJ, Lappage MG, et al. Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Glob Chang Biol. 2014;20(9):2815-28. https://doi.org/10.1111/gcb.12577
  39. Pyke GH, Thomson JD, Inouye DW, Miller TJ. Effects of climate change on phenologies and distributions of bumblebees and the plants they visit. Ecosphere. 2016;7(3):e01267. https://doi.org/10.1002/ecs2.1267
  40. Rader R, Reilly J, Bartomeus I, Winfree R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob Chang Biol. 2013;19(10):3103-10. https://doi.org/10.1111/gcb.12264
  41. Rafferty NE. Effects of global change on insect pollinators: multiple drivers lead to novel communities. Current Opinion in Insect Science. 2017;23:22-7. https://doi.org/10.1016/j.cois.2017.06.009
  42. Rahimi A, Mirmoayedi A. Evaluation of morphological characteristics of honey bee Apis mellifera meda (Hymenoptera: Apidae) in Mazandaran (North of Iran). Tech J Eng Appl Sci. 2013;3(13):1280-4.
  43. Rather TA, Kumar S, Khan JA. Multi-scale habitat selection and impacts of climate change on the distribution of four sympatric meso-carnivores using random forest algorithm. Ecol Process. 2020;9(1):1-17. https://doi.org/10.1186/s13717-019-0204-6
  44. Renner IW, Elith J, Baddeley A, Fithian W, Hastie T, Phillips SJ, et al. Point process models for presence-only analysis. Methods Ecol Evol. 2015;6(4):366-79. https://doi.org/10.1111/2041-210X.12352
  45. Samin N, Ghahari H, Bagriacik N. A faunistic study on leafcutting bees (Hymenoptera: Apoidea: Megachilidae) from some regions of Iran. Arquivos Entomoloxicos. 2015;14:193-200.
  46. Sanjerehei MM. The economic value of bees as pollinators of crops in Iran. Annu Res Rev Biol. 2014;2957-64.
  47. Scaven VL, Rafferty NE. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current zoology. 2013;59(3):418-26. https://doi.org/10.1093/czoolo/59.3.418
  48. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, et al. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev. 2010;85(4):777-95.
  49. Sirois-Delisle C, Kerr JT. Climate change-driven range losses among bumblebee species are poised to accelerate. Sci Rep. 2018;8(1):1-10. https://doi.org/10.1038/s41598-017-17765-5
  50. Stocker TF, Qin D, Plattner GK, Tignor MM, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. Climate Change 2013: The physical science basis contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. 2014.
  51. Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources, and a solution. BMC bioinformatics. 2007;8(1):1-21. https://doi.org/10.1186/1471-2105-8-1
  52. Suzuki-Ohno Y, Yokoyama J, Nakashizuka T, Kawata M. Estimating possible bumblebee range shifts in response to climate and land cover changes. Sci Rep. 2020;10(1):1-12. https://doi.org/10.1038/s41598-019-56847-4
  53. Takkis K, Tscheulin T, Petanidou T. Differential effects of climate warming on the nectar secretion of early-and late-flowering Mediterranean plants. Front Plant Sci. 2018;9:874. https://doi.org/10.3389/fpls.2018.00874
  54. Talebi KS, Sajedi T, Pourhashemi M. Forests of Iran, in A Treasure From the Past, a Hope for the Future, Springer; 2014.
  55. Tarkesh M, Jetschke G. Comparison of six correlative models in predictive vegetation mapping on a local scale. Environ Ecol Stat. 2012;19(3):437-57. https://doi.org/10.1007/s10651-012-0194-3
  56. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. Modelling species presence-only data with random forests. bioRxiv. 2020.
  57. Viana BF, Boscolo D, Mariano Neto E, Lopes LE, Lopes AV, Ferreira PA, et al. How well do we understand landscape effects on pollinators and pollination services? J Pollination Ecol. 2012. p. 7. https://doi.org/10.26786/1920-7603(2016)11
  58. Williams PH, Araujo MB, Rasmont P. Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Conserv. 2007;138(3-4):493-505. https://doi.org/10.1016/j.biocon.2007.06.001
  59. Wirtz P, Kopka S, Schmoll G. Phenology of two territorial solitary bees, Anthidium manicatum and A. florentinum (Hymenoptera: Megachilidae). J Zool. 1992;228(4):641-51. https://doi.org/10.1111/j.1469-7998.1992.tb04461.x
  60. Yurk BP, Powell JA. Modeling the evolution of insect phenology. Bull Math Biol. 2009;71(4):952-79. https://doi.org/10.1007/s11538-008-9389-z
  61. Zurell D, Franklin J, Konig C, Bouchet PJ, Dormann CF, Elith J, et al. A standard protocol for reporting species distribution models. Ecography. 2020;43(9):1261-77. https://doi.org/10.1111/ecog.04960