DOI QR코드

DOI QR Code

Analyzing Drift Patterns of Spray Booms with Different Nozzle Types and Working Pressures in Wind Tunnel

풍동실험에 의한 붐식 살포 농약의 노즐형태와 분사압력에 따른 비산 특성 분석

  • Park, Jinseon (AgriBio Institute of Climate Change Management, Chonnam National University) ;
  • Lee, Se-Yeon (Department of Rural and Bio-systems Engineering, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Choi, Lak-Yeong (Department of Rural and Bio-systems Engineering, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Jeong, Hanna (Department of Rural and Bio-systems Engineering, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Noh, Hyun Ho (Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yu, Seung-Hwa (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Song, Hosung (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hong, Se-woon (Department of Rural and Bio-systems Engineering, AgriBio Institute of Climate Change Management, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University)
  • Received : 2021.08.30
  • Accepted : 2021.09.09
  • Published : 2021.09.30

Abstract

With rising concerns about pesticide spray drifts, this study analyzed the drift patterns of two typically-used nozzles, XR nozzle and AI nozzle, concerning their working pressures and wind speeds by wind tunnel experiments. AI nozzle showed low drift potential with larger droplet sizes compared to XR nozzle. Airborne and deposition drifts of XR nozzle were two times higher than those of AI nozzle under high wind speeds (≥2 m s-1). In all cases, higher working pressures decreased the droplet sizes, thereby increasing the airborne and deposition drifts. Higher wind speeds also resulted in more airborne drifts, while ground deposition was increased under lower wind speeds. These effects of working pressures and wind speeds on the airborne and deposition drifts were observed at leeward distances less than 4 m from the nozzles. However, the airborne and deposition drifts were barely affected by the working pressures and wind speeds at leeward distances more than 11 m. The measurements were fitted to regression models of the drift curve with acceptable R2 values greater than 0.8, demonstrating that further studies will be useful to settle domestic issues of spray drifts.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업 (과제번호: PJ0150532021)의 지원에 의해 수행되었으며, 이에 감사드립니다.

References

  1. ASAE, 2013a. Procedure for measuring drift deposits from ground, orchard, and aerial sprayers. American Society of Agricultural and Biological Engineers Standard, ASAE S561.1 APR2004(R2013).
  2. ASAE, 2013b. Spray nozzle classification by droplet spectra. American Society of Agricultural and Biological Engineers Standard, ASAE S572.1 MAR2009(R2013).
  3. Bonds, J. A. S. and M. Leggett, 2015. A literature review of downwind drift from airblast sprayers: development of standard methodologies and a drift database. Transactions of the ASABE 58(6): 1471-1477. doi:10.13031/trans.58.11057.
  4. Cunha, J. P., P. Chueca, C. Garcera, and E. Molto, 2012. Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Protection 42: 116-123. doi:10.1016/j.cropro.2012.06.001.
  5. Endalew, A. M., M. Hertog, M. Delele, K. Baetens, T. Persoons, M. Baelmans, H. Ramon, B. Nicolai, and P. Verboven, 2009. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture. International Journal of Heat Fluid Flow 30:356-368. doi:10.1016/j.ijheatfluidflow.2008. 12.007.
  6. Fox, R. D., R. C. Derksen, H. Zhu, R. A. Downer, and R. D. Brazee, 2004. Airborne spray collection efficiency of nylon screen. Transactions of the ASABE 20(2): 147-152. doi:10.13031/2013.15883.
  7. Gil, E., J. Llorens, M. Gallart, J. A. Gil-Ribes, and A. Miranda-Fuentes, 2018. First attempts to obtain a reference drift curve for traditional olive grove's plantations following ISO 22866. Science of The Total Environment 627: 349-360. doi:10.1016/j.scitotenv.2018.01.229.
  8. Gregorio, E., X. Torrent, S. Planas, and J. R. Rosell-Polo, 2019. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. Science of the Total Environment 687: 967-977. doi:10.1016/j.scitotenv.2019.06.151.
  9. Guler, H., H. Zhu, H. E. Ozkan, R. C. Derksen, Y. Yu, and C. R. Krause, 2007. Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Transactions of the ASABE 50(3): 745-754. doi:10.13031/2013.23129.
  10. Hong, S. W. and R. W. Kim, 2018. CFD modeling of pesticide flow and drift from an orchard sprayer. Journal of Korean Society of Agricultural Engineers 60(3): 27-36. doi:10.5389/KSAE.2018.60.3.027 (in Korean).
  11. Hong, S. W., L. Zhao, and H. Zhu, 2018. SAAS, a computer program for estimating pesticide spray efficiency and drift of air-assisted pesticide applications. Computers and Electronics in Agriculture 155: 58-68. doi:10.1016/j.compag.2018.09.031.
  12. Hong, S. W., J. Park, H. Jeong, S. Lee, L. Choi, L. Zhao, and H. Zhu, 2021. Fluid dynamic approaches for prediction of spray drift from ground pesticide applications: a review. Agronomy 11(6): 1182. doi:10.3390/agronomy11061182.
  13. Kim, R. W. and S. W. Hong, 2019. Applicability of optical particle counters for measurement of airborne pesticide spray drift. Journal of the Korean Society of Agricultural Engineers 61(5): 79-87. doi:10.5389/KSAE.2019.61.5.079 (in Korean).
  14. KOSTAT, 2021. Use of pesticide and fertilizers. Statistics KOREA Government Official Work Conference. https://index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2422. Accessed 20 Aug. 2021.
  15. MAFRA, 2021. Positive list system. Ministry of Agriculture, Food and Rural Affairs. https://www.mafra.go.kr/PLS/2065/subview.do. Accessed 20 Aug. 2021.
  16. Noh, H. H., C. J. Kim, B. C. Moon, T. G. Kim, D. Kim, M. S. Oh, D. S. Choi, Y. Y. Kim, H. S. Song, and K. S. Kyung, 2020. Drift patterns of aerial spraying pesticide caused by formulations and nozzles. Korean Journal of Pesticide Science 24(3): 278-285. doi:10.7585/kjps.2020.24.3.278 (in Korean).
  17. Noh, H. H., C. J. Kim, B. C. Moon, J. H. Ro, D. Kim, M. S. Oh, H. T. Kim, and K. S. Kyung, 2020b. Measurement of drift amount of ametoctradin+dimethomorph 47 (27+20)% suspension concentrate for unmanned aerial spraying caused by wind direction and speed. Korean Journal of Pesticide Science 24(1):43-50. doi:10.7585/kjps.2020.24.1.43 (in Korean).
  18. Nuyttens, D., M. De Schampheleire, K. Baetens, and B. Sonck, 2007. The influence of operator-controlled variables on spray drift from field crop sprayers. Transactions of the ASABE 50(4): 1129-1140. doi:10.13031/2013.23622.
  19. Nuyttens, D., M. De Schampheleire, P. Verboven, E. Brusselman, and D. Dekeyser, 2009. Droplet size and velocity characteristics of agricultural sprays. Transactions of the ASABE 52(5): 1471-1480. doi:10.13031/2013.29127.
  20. Nuyttens, D., M. De Schampheleire, P. Verboven, and B. Sonck, 2010. Comparison between indirect and direct spray drift assessment methods. Biosystems Engineering 105:2-12. doi:10.1016/j.biosystemseng.2009.08.004.
  21. Park, J., S. Lee, H. Jeong, and S. W. Hong, 2020. A preliminary study on measurement of pesticide spray drift in the air. In Proceedings of the Korean Society of Agricultural Engineers Annual Meeting 2020: 252-252. (in Korean).
  22. Ramsdale, B. K. and C. G. Messersmith, 2017. Drift-reducing nozzle effects on herbicide performance. Weed Technology 15(3): 453-460. doi:10.1614/0890-037X(2001)015[0453:DRNEOH]2.0.CO;2.
  23. Reichard, D., H. Zhu, R. Fox, and R. Brazee, 1992. Wind tunnel evaluation of a computer program to model spray drift. Transactions of the ASABE 35: 755-758. doi:10.13031/2013.28658.
  24. Smith, D. B., L. E. Bode, and P. D. Gerard, 2000. Predicting ground boom spray drift. Transactions of the ASABE 43(3): 547-553. doi:10.13031/2013.2734.
  25. Torrent, X., C. Garcera, E. Molto, P. Chueca, R. Abad, C. Grafulla, C. Roman, and S. Planas, 2017. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. effect on wind tunnel and field spray drift. Crop Protection 2017: 130-143. doi:10.1016/j.cropro.2017.02.001.
  26. Zhu, H., D. Reichard, R. Fox, R. Brazee, and H. Ozkan, 1994. Simulation of drift of discrete sizes of water droplets from field sprayers. Transactions of the ASABE 37: 1401-1407. doi:10.13031/2013.28220.