Acknowledgement
본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업 (과제번호: PJ0150532021)의 지원에 의해 수행되었으며, 이에 감사드립니다.
References
- ASAE, 2013a. Procedure for measuring drift deposits from ground, orchard, and aerial sprayers. American Society of Agricultural and Biological Engineers Standard, ASAE S561.1 APR2004(R2013).
- ASAE, 2013b. Spray nozzle classification by droplet spectra. American Society of Agricultural and Biological Engineers Standard, ASAE S572.1 MAR2009(R2013).
- Bonds, J. A. S. and M. Leggett, 2015. A literature review of downwind drift from airblast sprayers: development of standard methodologies and a drift database. Transactions of the ASABE 58(6): 1471-1477. doi:10.13031/trans.58.11057.
- Cunha, J. P., P. Chueca, C. Garcera, and E. Molto, 2012. Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Protection 42: 116-123. doi:10.1016/j.cropro.2012.06.001.
- Endalew, A. M., M. Hertog, M. Delele, K. Baetens, T. Persoons, M. Baelmans, H. Ramon, B. Nicolai, and P. Verboven, 2009. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture. International Journal of Heat Fluid Flow 30:356-368. doi:10.1016/j.ijheatfluidflow.2008. 12.007.
- Fox, R. D., R. C. Derksen, H. Zhu, R. A. Downer, and R. D. Brazee, 2004. Airborne spray collection efficiency of nylon screen. Transactions of the ASABE 20(2): 147-152. doi:10.13031/2013.15883.
- Gil, E., J. Llorens, M. Gallart, J. A. Gil-Ribes, and A. Miranda-Fuentes, 2018. First attempts to obtain a reference drift curve for traditional olive grove's plantations following ISO 22866. Science of The Total Environment 627: 349-360. doi:10.1016/j.scitotenv.2018.01.229.
- Gregorio, E., X. Torrent, S. Planas, and J. R. Rosell-Polo, 2019. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. Science of the Total Environment 687: 967-977. doi:10.1016/j.scitotenv.2019.06.151.
- Guler, H., H. Zhu, H. E. Ozkan, R. C. Derksen, Y. Yu, and C. R. Krause, 2007. Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Transactions of the ASABE 50(3): 745-754. doi:10.13031/2013.23129.
- Hong, S. W. and R. W. Kim, 2018. CFD modeling of pesticide flow and drift from an orchard sprayer. Journal of Korean Society of Agricultural Engineers 60(3): 27-36. doi:10.5389/KSAE.2018.60.3.027 (in Korean).
- Hong, S. W., L. Zhao, and H. Zhu, 2018. SAAS, a computer program for estimating pesticide spray efficiency and drift of air-assisted pesticide applications. Computers and Electronics in Agriculture 155: 58-68. doi:10.1016/j.compag.2018.09.031.
- Hong, S. W., J. Park, H. Jeong, S. Lee, L. Choi, L. Zhao, and H. Zhu, 2021. Fluid dynamic approaches for prediction of spray drift from ground pesticide applications: a review. Agronomy 11(6): 1182. doi:10.3390/agronomy11061182.
- Kim, R. W. and S. W. Hong, 2019. Applicability of optical particle counters for measurement of airborne pesticide spray drift. Journal of the Korean Society of Agricultural Engineers 61(5): 79-87. doi:10.5389/KSAE.2019.61.5.079 (in Korean).
- KOSTAT, 2021. Use of pesticide and fertilizers. Statistics KOREA Government Official Work Conference. https://index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2422. Accessed 20 Aug. 2021.
- MAFRA, 2021. Positive list system. Ministry of Agriculture, Food and Rural Affairs. https://www.mafra.go.kr/PLS/2065/subview.do. Accessed 20 Aug. 2021.
- Noh, H. H., C. J. Kim, B. C. Moon, T. G. Kim, D. Kim, M. S. Oh, D. S. Choi, Y. Y. Kim, H. S. Song, and K. S. Kyung, 2020. Drift patterns of aerial spraying pesticide caused by formulations and nozzles. Korean Journal of Pesticide Science 24(3): 278-285. doi:10.7585/kjps.2020.24.3.278 (in Korean).
- Noh, H. H., C. J. Kim, B. C. Moon, J. H. Ro, D. Kim, M. S. Oh, H. T. Kim, and K. S. Kyung, 2020b. Measurement of drift amount of ametoctradin+dimethomorph 47 (27+20)% suspension concentrate for unmanned aerial spraying caused by wind direction and speed. Korean Journal of Pesticide Science 24(1):43-50. doi:10.7585/kjps.2020.24.1.43 (in Korean).
- Nuyttens, D., M. De Schampheleire, K. Baetens, and B. Sonck, 2007. The influence of operator-controlled variables on spray drift from field crop sprayers. Transactions of the ASABE 50(4): 1129-1140. doi:10.13031/2013.23622.
- Nuyttens, D., M. De Schampheleire, P. Verboven, E. Brusselman, and D. Dekeyser, 2009. Droplet size and velocity characteristics of agricultural sprays. Transactions of the ASABE 52(5): 1471-1480. doi:10.13031/2013.29127.
- Nuyttens, D., M. De Schampheleire, P. Verboven, and B. Sonck, 2010. Comparison between indirect and direct spray drift assessment methods. Biosystems Engineering 105:2-12. doi:10.1016/j.biosystemseng.2009.08.004.
- Park, J., S. Lee, H. Jeong, and S. W. Hong, 2020. A preliminary study on measurement of pesticide spray drift in the air. In Proceedings of the Korean Society of Agricultural Engineers Annual Meeting 2020: 252-252. (in Korean).
- Ramsdale, B. K. and C. G. Messersmith, 2017. Drift-reducing nozzle effects on herbicide performance. Weed Technology 15(3): 453-460. doi:10.1614/0890-037X(2001)015[0453:DRNEOH]2.0.CO;2.
- Reichard, D., H. Zhu, R. Fox, and R. Brazee, 1992. Wind tunnel evaluation of a computer program to model spray drift. Transactions of the ASABE 35: 755-758. doi:10.13031/2013.28658.
- Smith, D. B., L. E. Bode, and P. D. Gerard, 2000. Predicting ground boom spray drift. Transactions of the ASABE 43(3): 547-553. doi:10.13031/2013.2734.
- Torrent, X., C. Garcera, E. Molto, P. Chueca, R. Abad, C. Grafulla, C. Roman, and S. Planas, 2017. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. effect on wind tunnel and field spray drift. Crop Protection 2017: 130-143. doi:10.1016/j.cropro.2017.02.001.
- Zhu, H., D. Reichard, R. Fox, R. Brazee, and H. Ozkan, 1994. Simulation of drift of discrete sizes of water droplets from field sprayers. Transactions of the ASABE 37: 1401-1407. doi:10.13031/2013.28220.