DOI QR코드

DOI QR Code

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy

바이오에너지의 탄소부채 최소화를 위한 수학적 계획법

  • Choi, Soo Hyoung (Division of Chemical Engineering, Jeonbuk National University)
  • 최수형 (전북대학교 화학공학부)
  • Received : 2021.07.28
  • Accepted : 2021.08.23
  • Published : 2021.09.30

Abstract

Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.

바이오에너지는 탄소중립을 추구하는 방안 중 하나로 간주되고 있다. 그러나 수확된 식물 바이오매스를 연소하면 필연적으로 대기 중 이산화탄소는 일정기간 동안 화석을 연소할 때보다 더 많아진다. 본 논문에서는 이 탄소부채의 총량과 상환기간을 예측하고 최소화하는 방법을 제안한다. 사례연구로는 현재 사용되고 있는 화석연료를 바이오매스로 일시에 전환할 경우에 대한 탄소순환 영향평가를 수행한다. 이를 통해 탄소중립 개념의 근본적인 취약성을 지적한다. 바이오에너지의 지속가능성을 위한 실행방안으로는 숲 면적 감소분에 비례하는 추가식림 및 숲 질량 증가분에 비례하는 추가수확 공식을 제안하였다. 최적화 결과, 탄소부채 상환기간은 약 70년, 대기 중 이산화탄소는 최대 50% 이상, 정상상태에서 3% 증가가 예상된다. 이는 이론적으로 예측한 최상의 결과이며 실제로는 이보다 나쁠 것으로 추정된다. 따라서 바이오매스는 진정으로 탄소 중립적이지 않으며, 화석연료의 대체에너지원으로서 부적합하다. 본 연구에서 제안된 방법은 이미 사용 중인 바이오에너지의 현재 및 미래 탄소부채 최소화를 통해 탄소중립으로의 접근에 기여할 수 있을 것으로 예상된다.

Keywords

Acknowledgement

본 논문은 UCLA의 Vasilios I. Manousiouthakis 교수와의 공동연구에 기초한 후속연구 결과로서 전북대학교에서 지원하였습니다.

References

  1. Wikipedia, "Carbon neutrality," https://en.wikipedia.org/wiki/Carbon_neutrality (2021).
  2. Olah, G. A., Prakash, G. K. S., and Goeppert, A., "Anthropogenic Chemical Carbon Cycle for a Sustainable Future," J. Am. Chem. Soc., 133(33), 12881-12898 (2011). https://doi.org/10.1021/ja202642y
  3. Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W., "The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System," Science, 290(5490), 291-296 (2000). https://doi.org/10.1126/science.290.5490.291
  4. Yi, Q., Li, W., Feng, J., and Xie, K., "Carbon Cycle in Advanced Coal Chemical Engineering," Chem. Soc. Rev., 44(15), 5409-5445 (2015). https://doi.org/10.1039/c4cs00453a
  5. Katelhon, A., Meys, R., Deutz, S., Suh, S., and Bardow, A., "Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry," Proc. Natl. Acad. Sci. USA, 116(23), 11187-11194 (2019). https://doi.org/10.1073/pnas.1821029116
  6. Gabrielli, P., Gazzani, M., and Mazzotti, M., "The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry," Ind. Eng. Chem. Res., 59(15), 7033-7045 (2020). https://doi.org/10.1021/acs.iecr.9b06579
  7. Gonzalez-Garay, A., Mac Dowell, N., and Shah, N., "A Carbon Neutral Chemical Industry Powered by the Sun," Discov. Chem. Eng., 1, 2 (2021). https://doi.org/10.1007/s43938-021-00002-x
  8. UNFCCC, "The Paris Agreement," https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2021).
  9. IPCC, "Reports," https://www.ipcc.ch/reports/ (2021).
  10. NASA, "Global Climate Change," https://climate.nasa.gov/ (2021).
  11. GLOBE, "The GLOBE Program," https://www.globe.gov/ (2021).
  12. Sallade, S., Ollinger, S., Albrechtova, J., Martin, M., Gengarelly, L., Schloss, A., Bourgeault, J., Freuder, R., Lhoptakova, Z., Randolph, G., Semorakova, B., Wicklein, H., and Donahue, K., "GLOBE Carbon Cycle," http://globecarboncycle.unh.edu/DownloadActivities/Model/GlobalCarbonCycleModeling_Feedbacks.zip (2012).
  13. GLOBE, "GLOBE Program's Work," https://exchange.iseesystems.com/directory/globeprogam (2019).
  14. Choi, S. H., and Manousiouthakis, V. I., "On the Carbon Cycle Impact of Combustion of Harvested Plant Biomass vs. Fossil Carbon Resources," Comput. Chem. Eng., 140, 106942 (2020). https://doi.org/10.1016/j.compchemeng.2020.106942
  15. Beeler, C., and Morrison, J., "The UK's move away from coal means they're burning wood from the US," https://www.pri.org/stories/2018-06-20/uk-s-move-away-coal-means-they-re-burning-wood-us (2018).
  16. Bat'a, R., Fuka, J., Lesakova, P., and Heckenbergerova, J., "CO2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating," Energies, 12(20), 3864 (2019). https://doi.org/10.3390/en12203864
  17. Xu, Y., Yang, K., Zhou, J., and Zhao, G., "Coal-Biomass Co-Firing Power Generation Technology: Current Status, Challenges and Policy Implications," Sustainability, 12(9), 3692 (2020). https://doi.org/10.3390/su12093692
  18. Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Penuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N., "Greening of the Earth and its Drivers," Nat. Clim. Chang., 6(8), 791-796 (2016). https://doi.org/10.1038/nclimate3004
  19. Sauvage, J., Spivacka, A. J., Murray, R. W., and D'Hondt, S., "Determination of in Situ Dissolved Inorganic Carbon Concentration and Alkalinity for Marine Sedimentary Porewater," Chem. Geol., 387, 66-73 (2014). https://doi.org/10.1016/j.chemgeo.2014.06.010
  20. Pommerening, A., and Muszta, A., "Relative Plant Growth Revisited: Towards a Mathematical Standardisation of Separate Approaches," Ecol. Modell., 320, 383-392 (2016). https://doi.org/10.1016/j.ecolmodel.2015.10.015
  21. Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., and Crowther, T. W., "The Global Tree Restoration Potential," Science, 365(6448), 76-79 (2019). https://doi.org/10.1126/science.aax0848
  22. Mathworks, "ode45," https://www.mathworks.com/help/matlab/ref/ode45.html (2021).
  23. Mathworks, "integral," https://www.mathworks.com/help/matlab/ref/integral.html (2021).