• Title/Summary/Keyword: Carbon debt

Search Result 4, Processing Time 0.02 seconds

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy (바이오에너지의 탄소부채 최소화를 위한 수학적 계획법)

  • Choi, Soo Hyoung
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.269-274
    • /
    • 2021
  • Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.

Linking nuclear energy, human development and carbon emission in BRICS region: Do external debt and financial globalization protect the environment?

  • Sadiq, Muhammad;Shinwari, Riazullah;Usman, Muhammad;Ozturk, Ilhan;Maghyereh, Aktham Issa
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3299-3309
    • /
    • 2022
  • Nuclear energy has the potential to play an influential role in energy transition efforts than is now anticipated by many countries. Realizing sustainable human development and reducing global climate crises will become more difficult without significantly increasing nuclear power. This paper aims to probe the role of nuclear energy, external debt, and financial globalization in sustaining human development and environmental conditions simultaneously in BRICS (Brazil, Russia, India, China, and South Africa) countries. This study applied a battery of second-generation estimation approaches over the period from 1990 to 2019. These methods are useful and robust to cross-countries dependencies, slope heterogeneity, parameters endogeneity, and serial correlation that are ignored in conventional approaches to generate more comprehensive and reliable estimates. The empirical findings indicate that nuclear energy and financial globalization contribute to human development, whereas external debt inhibits it. Similarly, financial globalization accelerates ecological deterioration, but nuclear energy and external debt promote environmental sustainability. Moreover, the study reveals bidirectional feedback causalities between human development, carbon emissions and nuclear energy consumption. The study offers useful policy guidance on accomplishing sustainable and inclusive development in BRICS countries.

Two Decades of International Climate Negotiations - Carbon Budget Allocation Approach to Re-shaping Developing Country Strategies

  • Yedla, Sudhakar;Garg, Sandhya
    • East Asian Economic Review
    • /
    • v.18 no.3
    • /
    • pp.277-299
    • /
    • 2014
  • Climate negotiations have been going on for the last two decades and the awareness for impacts of climate change has improved substantially. However, the trends of global $CO_2$ emissions did not reveal any encouraging signs, with developing countries emitting even more $CO_2$ and industrialized nations showing no signs of reducing emissions to below their 1990 levels. In order to meet the ambitious targets set by the Stern report for the next two decades, it is important to find new and path-breaking approaches to climate change. This paper attempts to analyze the use of carbon/development space historically, at present and in the future with a focus on equity. Trends analysis focuses on the last two decades (Post Rio) and the carbon budget based analysis considers a period of 1850-2050. Industrialized countries are found to have significantly overshot their budgeted allocation for the last 160 years. Both the developing and industrialized countries are overshooting the present budget estimates based on world per capita budget for the next forty years and proportional to the population of each country. It is important for the industrialized countries to bring down their emissions to meet their carbon budgets while the developing countries use their development space as a guideline for their development path. Furthermore, this paper presents aggressive and regressive scenarios for the industrialized countries to compensate for the climate debt they have created.

Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox (산림바이오매스에너지에 관한 과학적 근거에 따른 통설적 접근)

  • Seung-Rok Lee;Gyu-Seong Han
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.145-174
    • /
    • 2024
  • Addressing climate change necessitates evidence-based policies grounded in science. The use of forest biomass for energy production is based on a broad scientific consensus at the international level. However, some environmental groups in South Korea are opposing this system of energy production. Through this study, the authors aim to reduce unnecessary confusion and foster an atmosphere conducive to meaningful evidence-based policies. We have classified the issue into eight categories: biological carbon cycle, carbon debt, nature-based solutions, air emissions, cascading principles and sustainability certification, forest environmental impacts, climate change litigation, and the behavior of environmental groups and public perception. Consequently, the following key points were derived: (1) the actions of some environmental groups seem to follow a similar pattern to denialist behavior that denies climate change and climate science; (2) the quality of evidence for campaigns that oppose the use of forest biomass for energy production is low, with a tendency to overgeneralize information, high uncertainty, and difficulty in finding new claims.; (3) most of the public believes that forest biomass energy is necessary, and the governments of major countries are aware of its importance. Significantly, Forest biomass for energy is based on an overwhelming level of scientific consensus recognized internationally.