과제정보
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01056924) (J. Song) and by the 2020 scientific promotion program funded by Jeju National University (J. Kang).
참고문헌
- Ardia D, Bluteau K, and Ruede, M (2019). Regime changes in bitcoin GARCH volatility dynamics, Finance Research Letters, 29, 266-271. https://doi.org/10.1016/j.frl.2018.08.009
- Aue A and Horvath L (2013). Structural breaks in time series, Journal of Time Series Analysis, 34, 1-16. https://doi.org/10.1111/j.1467-9892.2012.00819.x
- Bariviera AF, Basgall MJ, Hasperue W, and Naiouf M (2017). Some stylized facts of the bitcoin market, Physica A: Statistical Mechanics and its Applications, 484, 82-90. https://doi.org/10.1016/j.physa.2017.04.159
- Berkes I,Horvath L, and Kokoszka P (2004). Testing for parameter constancy in GARCH(p,q) models, Statistics & Probability Letters, 4, 263-273.
- Canh NP, Wongchoti U, Thanh SD, and Thong NT (2019). Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model, Finance Research Letters, 29, 90-100. https://doi.org/10.1016/j.frl.2019.03.011
- Caporale GM, Gil-Alana L, and Plastun A (2018). Persistence in the cryptocurrency market, Research in International Business and Finance, 46, 141-148. https://doi.org/10.1016/j.ribaf.2018.01.002
- Caporale GM and Zekokh T (2019). Modelling volatility of cryptocurrencies using Markov- Switching GARCH models, Research in International Business and Finance, 48, 143-155. https://doi.org/10.1016/j.ribaf.2018.12.009
- Chaim P and Laurini MP (2018). Volatility and return jumps in bitcoin, Economics Letters, 173, 158-163. https://doi.org/10.1016/j.econlet.2018.10.011
- Chen C and Liu LM (1993). Joint estimation of model parameters and outlier effects in time series, Journal of the American Statistical Association, 88, 284-297. https://doi.org/10.2307/2290724
- Chu J, Chan S, Nadarajah S, and Osterrieder J (2017). GARCH modelling of cryptocurrencies, Journal of Risk and Financial Management, 10, 17. https://doi.org/10.3390/jrfm10040017
- Fearnhead P and Rigaill G (2019). Change point detection in the presence of outliers, Journal of the American Statistical Association, 114, 169-183. https://doi.org/10.1080/01621459.2017.1385466
- Franses PH and Ghijsels H (1999). Additive outliers, GARCH and forecasting volatility, International Journal of forecasting, 15, 1-9. https://doi.org/10.1016/S0169-2070(98)00053-3
- Glaser F, Zimmermann K, Haferkorn M, Weber MC, and Siering M (2014). Bitcoin-asset or currency? revealing users' hidden intentions, Revealing Users' Hidden Intentions (April 15, 2014). ECIS 2014(Tel Aviv).
- Horvath L and Rice G (2014). Extensions of some classical methods in change point analysis, TEST, 23, 219-255. https://doi.org/10.1007/s11749-014-0368-4
- Hwang S and Basawa I (2004). Stationarity and moment structure for Box-Cox transformed threshold GARCH (1, 1) processes, Statistics & Probability Letters, 68, 209-220. https://doi.org/10.1016/j.spl.2003.08.016
- Jiang Y, Nie H, and Ruan W (2018). Time-varying long-term memory in bitcoin market, Finance Research Letter, 25, 280-284. https://doi.org/10.1016/j.frl.2017.12.009
- Katsiampa P (2017). Volatility estimation for bitcoin: A comparison of GARCH models, Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
- Kulperger R and Yu H (2005). High moment partial sum processes of residuals in GARCH models and their applications, The Annals of Statistics, 33, 2395-2422. https://doi.org/10.1214/009053605000000534
- Kupiec P (1995). Techniques for verifying the accuracy of risk measurement models, The Journal of Derivatives, 3, 73-84. https://doi.org/10.3905/jod.1995.407942
- Lee S and Song J (2009). Minimum density power divergence estimator for GARCH models, TEST, 18, 316-341. https://doi.org/10.1007/s11749-008-0093-y
- Mensi W, Al-Yahyaee KH, and Kang SH (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from bitcoin and ethereum, Finance Research Letters, 29, 222-230. https://doi.org/10.1016/j.frl.2018.07.011
- Ninomiya Y (2015). Change-point model selection via AIC, Annals of the Institute of Statistical Mathematics, 67, 943-961. https://doi.org/10.1007/s10463-014-0481-x
- Pan J, Wang H, and Tong H (2008). Estimation and tests for power-transformed and threshold GARCH models, Journal of Econometrics, 142, 352-378. https://doi.org/10.1016/j.jeconom.2007.06.004
- Song J and Kang J (2018). Parameter change tests for ARMA-GARCH models, Computational Statistics & Data Analysis, 121, 41-56. https://doi.org/10.1016/j.csda.2017.12.002
- Song J and Kang J (2021). Test for parameter change in the presence of outliers: the density power divergence based approach, Journal of Statistical Computation and Simulation, 5, 1016-1039. https://doi.org/10.1080/00949655.2020.1842407
- Thies S and Molnar P (2018). Bayesian change point analysis of bitcoin returns, Finance Research Letters, 27, 223-227. https://doi.org/10.1016/j.frl.2018.03.018
- Tiwari AK, Kumar S, and Pathak R (2019). Modelling the dynamics of bitcoin and litecoin: GARCH versus stochastic volatility models, Applied Economics, 51, 4073-4082. https://doi.org/10.1080/00036846.2019.1588951
- Tsay RS (1988). Outliers, level shifts, and variance changes in time series, Journal of forecasting, 7, 1-20. https://doi.org/10.1002/for.3980070102