DOI QR코드

DOI QR Code

Removal of Cobalt Ion in Aqueous Solution Using Zeolitic Materials Synthesized from Jeju Volcanic Rocks

제주 화산석으로 합성한 제올라이트 물질을 이용한 용액 중의 Co 이온 제거

  • Cho, Eunnim (Busan Metropolitan City Institute of Health & Environment) ;
  • Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan) ;
  • Kim, Moon il (Department of Environmental Administration, Catholic University of Pusan)
  • 조은님 (부산광역시 보건환경연구원) ;
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 김문일 (부산가톨릭대학교 환경행정학과)
  • Received : 2021.07.08
  • Accepted : 2021.09.12
  • Published : 2021.09.30

Abstract

In this study, zeolitic materials were synthesized from Jeju Volcanic Rocks (JVR) using a fusion/hydrothermal method at NaOH/JVR ratios of 0.6 and 1.2. The crystallinities of the zeolitic materials at NaOH/JVR ratios of 0.6 and 1.2 were 25.5% and 59.0%, respectively. It was confirmed through the SEM image that the zeolitic materials covered the zeolite particle with a cube-shaped crystals. The Co ions adsorption by the zeolitic materials were to reach the adsorption equilibrium at 120 min. It could be better simulated in the pseudo-second order adsorption kinetic equation than in the pseudo-first order adsorption kinetic equation. The adsorption capacities (qm) of Co ions could be to estimate Langmuir isotherm better than Freundlich isotherm. The maximum adsorption capacities (qm) at NaOH/JVR ratios of 0.6 and 1.2 were 55.3 mg/g and 68.7 mg/g, respectively. It was found that there was a high correlation between the crystallinity of zeolitic materials and the adsorption capacity of Co ions adsorption.

Keywords

References

  1. Belova, T. P., 2019, Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite, Heliyon, 5, e02320. https://doi.org/10.1016/j.heliyon.2019.e02320
  2. Borai, E. H., Breky, M. M. E., Sayed, M. S., Abo-Aly, M. M., 2015, Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt andeuropium ions, J. Col. Int. Sci., 450, 17-25. https://doi.org/10.1016/j.jcis.2015.02.062
  3. Chegrouche, S., Mellah, A., Barkat, M., 2009, Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies, Desalination, 235, 306-318. https://doi.org/10.1016/j.desal.2008.01.018
  4. Fang, X. H., Fang, F., Lu, C. H., Zheng, L., 2017, Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl. Eng. Technol., 49, 556-561. https://doi.org/10.1016/j.net.2016.11.008
  5. Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41, 7-14. https://doi.org/10.14407/jrpr.2016.41.1.007
  6. Ho, Y. S., McKay, G., 1998, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70, 115-124. https://doi.org/10.1016/S0923-0467(98)00076-1
  7. Hwang, D. S., Choung, Y. J., Choung, W. M., Park, J. H., Park, S. J., 2002, Precipitation separation of 99Mo by α-benzoinoxime in simulated radioactive solution, J. Kor. Ind. Eng. Chem., 13, 82-86.
  8. Joseph, I. V., Tosheva, L., Doyle, A. M., 2020, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8, 103895. https://doi.org/10.1016/j.jece.2020.103895
  9. Kim, C. W., Kim, J. Y., Choi, J. R., Ji, P. K., Park, J. K., Shin, S. W., Ha, J. H., Song, M. J., 2004, Characteristics of vitrification process and vitrified form for radioactive waste, J. Kor. Rad. Waste Soc., 2, 175-180.
  10. Krishna, M. V. B., Rao, S. V., Arunachalam, J., Murali, M. S., Kumar, S., Manchanda, V. K., 2004, Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent, Sep. Purifi. Technol., 38, 149-161. https://doi.org/10.1016/j.seppur.2003.11.002
  11. Lagergren, S., 1898, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39.
  12. Lee, C. H., Lee, M. G., 2018, Evaluation of Exchange Capacities of Ca2+ and Mg2+ ions by Na-A Zeolite Synthesized from Coal Fly Ash, J. Environ. Sci. Int., 27, 975-982. https://doi.org/10.5322/JESI.2018.27.11.975
  13. Lee, M. G., Park, J. W., Kam, S. K., Lee, C. H., 2018, Synthesis of Na-A zeolite from Jeju scoria using fusion/hyfrothermal method, Chemosphere, 207, 203-208. https://doi.org/10.1016/j.chemosphere.2018.05.080
  14. Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr Ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26, 363-371. https://doi.org/10.5322/JESI.2017.26.3.363
  15. Lin, Z., Yuan, P., Yue, Y., Bai, Z., Zhu, H., Wang, T., Bao, X., 2020, Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions, Sci. Total Environ., 698, 134287. https://doi.org/10.1016/j.scitotenv.2019.134287
  16. Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash. Fuel 84, 2289-2294. https://doi.org/10.1016/j.fuel.2005.05.003
  17. Mahmoud, M. E., Saad, E. A., El-Khalib, A. M., Soliman, M. A., 2018, Adsorptive removal of radioactive isotopes of cobalt and zinc from waterand radioactive wastewater using TiO2/Ag2O nanoadsorbents, Prog. Nuc. Energy, 106, 51-63. https://doi.org/10.1016/j.pnucene.2018.02.021
  18. Moraci, N., Calabro, P. S., 2010, Heavy metals removal and hydraulic performance in zero-valent ironpumicepermeable reactive barriers, J. Env. Man., 91, 2336-2341. https://doi.org/10.1016/j.jenvman.2010.06.019
  19. Moradi, M., Fazlzadehdavil, M., Pirasheb, M., Monsouri, Y., Khosravi, T., Sharafi, K., 2016, Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent, Arc. Env. Prot., 42, 33-43.
  20. Ozturk, B., Yildirim, Y., 2008, Investigation of sorption capacity of pumice for SO2 capture, Proc. Saf. Env. Prot., 86, 31-36. https://doi.org/10.1016/j.psep.2007.10.010
  21. Roy, K., Pal, D. K., Basua, S., Nayak, D., Lahiri, S., 2002, Synthesis of a new ion exchanger, zirconium vanadate and its application to the separation of barium and cesium radionuclides at tracer levels, Appl. Radiat. Isot., 57, 471-474. https://doi.org/10.1016/S0969-8043(02)00136-7
  22. Sharafi, K., Pirsaheb, M., Gupta, V. K., Agarwal, S., Moradi, M., Vasseghian, Y., Dragoli, E. N., 2019, Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks, J. Mol. Liq., 274, 699-714. https://doi.org/10.1016/j.molliq.2018.11.006
  23. Singh, B. K., Tomar, R., Tomar, R., Tomar, S. S., 2011, Sorption of homologues of radionuclides by synthetic ion exchanger, Microporous Mesoporous Mater., 142, 629-640. https://doi.org/10.1016/j.micromeso.2011.01.006
  24. Tanaka, H., Fujii, A., 2009, Effect of stirring on the dissolution of coal fly ash and synthesis of pure form Na-A and -X zeolites by two step process, Adv. Powd. Tech. 20, 473-479. https://doi.org/10.1016/j.apt.2009.05.004
  25. Treacy, M. M. J., Higgins, J. B., 2001, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, Amsterdam, 214-217.
  26. Yang, M. S., 2009, Selection of adsorbents and evaluation of basic properties for removal of ions from liquid radioactive wastes, J. Adv. Eng. Technol., 2, 189-194.
  27. Yang, W. W., Luo, G. S., Gong, X. C., 2005, Extraction and separation of metal ions by a column packed with polystyrene microcapsules containing Aliquat 336, Sep. Purif. Technol., 43, 175-182. https://doi.org/10.1016/j.seppur.2004.08.007
  28. Yin, X., Wang, X., Wu, H., Ohnuki, T., Takeshita, K., 2017, Enhanced desorption of cesium from collapsed interlayer regions invermiculite by hydrothermal treatment with divalent cations, J. Haz. Mat., 326, 47-51. https://doi.org/10.1016/j.jhazmat.2016.12.017