DOI QR코드

DOI QR Code

PJBL기반 데이터 분석을 통한 비전공자의 AI 교육 효과성 검증

Verification of the effectiveness of AI education for Non-majors through PJBL-based data analysis

  • 백수진 (단국대학교 SW중심대학사업단) ;
  • 박소현 (단국대학교 SW중심대학사업단)
  • Baek, Su-Jin (SW-Centric University Project, Dankook University) ;
  • Park, So-Hyun (SW-Centric University Project, Dankook University)
  • 투고 : 2021.07.30
  • 심사 : 2021.09.20
  • 발행 : 2021.09.28

초록

인공지능이 점차 직무에 확대됨에 따라 비전공자에게 요구되는 AI 리터러시 역량을 갖춘 인재 육성이 필요하다. 이에 본 연구에서는 AI 교육의 필요성 및 현황을 기반으로 향후 전공과 관련하여 AI 학습이 지속 가능하도록 비전공자에 맞는 AI 리터러시 역량 향상 교육을 실시하였다. D 대학의 비전공자를 대상으로 프로젝트 기반 데이터 분석과 시각화를 통한 문제 해결방안 도출을 15주에 걸쳐 적용하고, 학습자들의 교육 전후에 대한 AI 능력 향상 및 효과성을 분석하여 검증하였다. 그 결과, 학습자들의 데이터 분석 및 활용 능력, AI 리터러시 능력, AI 자기효능감 부분에서 통계적으로 유의미한 수준의 긍정적 변화를 확인할 수 있었다. 특히, 학습자들에게 공공데이터를 직접 활용하여 분석하고 시각화하는 능력뿐만 아니라 이를 AI 활용과 연결하여 문제를 해결할 수 있는 자기효능감까지 향상시켰다. 이는 비전공자의 AI 교육에 매우 유용하고 효과성이 있음을 확인할 수 있다. 향후 본 연구를 바탕으로 AI 활용을 확장하여 데이터와 AI 기술을 일상 속에서 자유롭게 활용 가능하도록 다양한 계열의 비전공자에 맞는 확장된 AI 교육 과정 연구를 진행할 예정이다.

As artificial intelligence gradually expands into jobs, iIt is necessary to nurture talents with AI literacy capabilities required for non-majors. Therefore, in this study, based on the necessity and current status of AI education, AI literacy competency improvement education was conducted for non-majors so that AI learning could be sustainable in relation to future majors. For non-majors at University D, problem-solving solutions through project-based data analysis and visualization were applied over 15 weeks, and the AI ability improvement and effectiveness of learners before and after education were analyzed and verified. As a result, it was possible to confirm a statistically significant level of positive change in the learners' data analysis and utilization ability, AI literacy ability, and AI self-efficacy. In particular, it not only improved the learners' ability to directly utilize public data to analyze and visualize it, but also improved their self-efficacy to solve problems by linking this with the use of AI.

키워드

참고문헌

  1. J. Y. Seo, (2019). A Case Study on the Teaching and Learning Method of SW Education for Data Analysis Problem Solving. Korea Digital Contents Society, 20(10). 1953-1960. DOI: 10.9728/dcs.2019.20.10.1953
  2. S. H. Lee, J. Y. Han (2020). Analysis of Relationships among SW Interests, AI Interests, Level of Programming Skills, AI Self-Efficacy, and Persistence of AI Learning. The Korean Association Of Computer Education, 23(6). 51-58. DOI : 10.32431/kace.2020.23.6.005
  3. Long, D & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1-16. DOI: 10.1145/3313831.3376727
  4. H. S. Woo, H. J. Lee, J. M. Kim, & W. K. Lee (2020). Analysis of Artificial Intelligence Curriculum of SW Universities. The Journal of Association Of Computer Education, 23(2), 13-20. DOI : 10.32431/kace.2020.23.2.002
  5. S. J. Baek, Y. H. Shin (2021). Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities, Journal of Digital Convergence, 19(5), 285-293. DOI : 10.14400/JDC.2021.19.5.285
  6. H. I. Ryu & J. W. Cho. (2021). Development of Artificial Intelligence Education System for K-12 Based on 4P. Journal of Digital Convergence, 19(1), 141-149. DOI : 10.14400/JDC.2021.19.1.141
  7. Y. H. Seo (2020). New Education and Talent Strategies Needed in the Era of Digital Transformation. Monthly Software Oriented Society. 70, 27-30.
  8. K. Y. Park, C. H. Quan, H. Y. Cho (2021), An Overview of AI-related Liberal Arts Education in Japan and China - A View of AI Literacy as Essential Part of Liberal Arts Education, Journal of AI Humanities, 7, 87-108, DOI : 10.46397/JAIH.7.4
  9. Consortium for Strengthening Mathematical and Data Science Education. (2020). Mathematical/data science/AI (literacy level) model curriculum-Fostering data thinking-. Retrieved from http://www.mi.u-tokyo.ac.jp/consortium/pdf/model_literacy.pdf
  10. The State Council of the People's Republic of China. (2017). New Generation A.I. Development Plan. State Development. 35. Retrieved from https://baike.baidu.com/item/%E6%96%B0%E4%B8%80%E4%BB%A3%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%8F%91%E5%B1%95%E8%A7%84%E5%88%92
  11. Y. S. Park, S. J. Lee (2020), Study on the direction of universal big data and big data education-based on the survey of big data experts, Journal of the Korean Association of Information Education, vol. 24(2), 201-214, DOI : 10.14352/jkaie.2020.24.2.201
  12. J. Y. Seo, S. H. Shin (2020), A Case Study on the Effectiveness of Major-friendly Contents in Software Education for the Non-majors, Journal of Digital Convergence, 18(5), 55-63, DOI : 10.14400/JDC.2020.18.5.055
  13. K. Hur (2020), Curriculum of Basic Data Science Practices for Non-majors, Journal of practical engineering education, 12(2), 265-273, DOI : 10.14702/JPEE.2020.265
  14. J. Y. Hong, Y. S. Kim (2020), Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students, Journal of The Korean Association of Information Education, 24(6), 633-641, DOI : 10.14352/jkaie.2020.24.6.633
  15. S. Y. Hong, E. H. Goo, S. H. Shin & T. K. Lee, J. Y. Seo (2021), Development the Measurement Tool on the Software Educational Effectiveness for Non-major Undergraduate Students, The Journal of korean association of computer education, 24(1), DOI : 10.32431/kace.2021.24.1.005
  16. S. H. Lee (2020), Analyzing the effects of artificial intelligence (AI) education program based on design thinking process, The Journal of korean association of computer education, 23(4), 49-59, DOI : 10.32431/kace.2020.23.4.005