DOI QR코드

DOI QR Code

FEKETE-SZEGÖ INEQUALITIES OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS AND APPLICATIONS TO SOME DISTRIBUTION SERIES

  • SOUPRAMANIEN, T. (Department of Mathematics, IFET College of Engineering) ;
  • RAMACHANDRAN, C. (Department of Mathematics, University College of Engineering Villupuram, Anna University) ;
  • CHO, NAK EUN (Department of Applied Mathematics, College of Natural Sciences, Pukyong National University)
  • Received : 2021.04.12
  • Accepted : 2021.06.07
  • Published : 2021.09.30

Abstract

The aim of this article is to estimate the coefficient bounds of certain subclasses of analytic functions. We claim that this is a novel and unique effort in combining the coefficient functional along with the new domains and the probability distributions which have not been found or are available in the literature of coefficients bounds. Here the authors analyze these bounds in the special domains associated with exponential function and sine function. Further we obtain Fekete-Szegö inequalities for the defined subclasses of analytic functions defined through Poisson distribution series and Pascal distribution series.

Keywords

Acknowledgement

The authors would like to thank the referees for their helpful comments and suggestions.

References

  1. O.P. Ahuja and M. Jahangiri, Fekete-Szego problem for a unified class of analytic functions, PanAmer. Math. J. 7 (1997), 67-78.
  2. M.H. Al-Abbadi and M. Darus, The Fekete-Szego theorem for certain class of analytic functions, Gen. Math. 19 (2011), 41-51.
  3. K. Al-Shaqsi and M. Darus, On Fekete-Szego problems for certain subclass of analytic functions, Appl. Math. Sci.(Ruse) 2 (2008), 431-441.
  4. R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2009), 119-142.
  5. M. Arif, M. Raza, Huo Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math. 17 (2019), 1615-1630. https://doi.org/10.1515/math-2019-0132
  6. T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  7. N.E. Cho, and V. Kumar, S.S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), 213-232. https://doi.org/10.1007/s41980-018-0127-5
  8. J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc. Japan 59 (2007), 707-727. https://doi.org/10.2969/jmsj/05930707
  9. S.M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59 (2019), 301-314. https://doi.org/10.5666/KMJ.2019.59.2.301
  10. M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
  11. H.-Y. Zhang and H. Tang and X.-M. Niu, Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, Symmetry 10 (2018), Article ID: 501. doi:10.3390/sym10100501
  12. S. Kanas and A. Lecko, On the Fekete-Szego problem and the domain of convexity for a certain class of univalent functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 10 (1990), 49-57.
  13. S. Kanas and H.E. Darwish, Fekete-Szego problem for starlike and convex functions of complex order, Appl. Math. Lett. 23 (2010), 777-782. https://doi.org/10.1016/j.aml.2010.03.008
  14. S. Kanas, An unified approach to the Fekete-Szego problem, Appl. Math. Comput. 218 (2012), 8453-8461. https://doi.org/10.1016/j.amc.2012.01.070
  15. F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
  16. Lei. Shi, H.M. Srivastava, M. Arif, H. Shehzad and K. Hassan, An Investigation of the Third Hankel Determinant Problem for Certain Subfamilies of Univalent Functions Involving the Exponential Function, Symmetry 11 (2019), Article ID: 598. doi:10.3390/sym11050598
  17. K. Lowner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. https://doi.org/10.1007/BF01170633
  18. W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis at the Nankai Institute of Mathematics (1992), 157-169.
  19. R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365-386. https://doi.org/10.1007/s40840-014-0026-8
  20. S.S. Miller and P.T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker Inc., New York, 2000.
  21. A. Naz, S. Nagpal and V. Ravichandran, Exponential starlikeness and convexity of confluent hypergeometric, Lommel, and Struve functions, Mediterr. J. Math. 17 (2020), 22 pp. https://doi.org/10.1007/s00009-019-1455-2
  22. H. Orhan, E. Deniz and D. Raducanu, The Fekete-Szego problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (2010), 283-295. https://doi.org/10.1016/j.camwa.2009.07.049
  23. C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Gottingen, 1975.
  24. S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014, Art. ID 984135, pp 3.
  25. C. Ramachandran, T. Soupramanien and J. Sokol, The Fekete-Szego functional associated with k-th root transformation using quasi-subordination, J. Anal. 28 (2020), 199-208. https://doi.org/10.1007/s41478-017-0059-0
  26. C. Ramachandran, T. Soupramanien and L. Vanitha, Estimation of coefficient bounds for the subclasses of analytic functions associated with Chebyshev polynomial, J. Math. Comput. Sci. 11 (2021), 3232-3243
  27. T.N. Shanmugam, C. Ramachandran and V. Ravichandran, Fekete-Szego problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43 (2006), 589-598. https://doi.org/10.4134/BKMS.2006.43.3.589
  28. T.N. Shanmugam and S. Sivasubramanian, On the Fekete-Szego problem for some subclasses of analytic functions, J. Inequal. Pure Appl. Math. 6 (2005), Article 71, pp 6.