Acknowledgement
The authors would like to thank the referees for their helpful comments and suggestions.
References
- O.P. Ahuja and M. Jahangiri, Fekete-Szego problem for a unified class of analytic functions, PanAmer. Math. J. 7 (1997), 67-78.
- M.H. Al-Abbadi and M. Darus, The Fekete-Szego theorem for certain class of analytic functions, Gen. Math. 19 (2011), 41-51.
- K. Al-Shaqsi and M. Darus, On Fekete-Szego problems for certain subclass of analytic functions, Appl. Math. Sci.(Ruse) 2 (2008), 431-441.
- R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2009), 119-142.
- M. Arif, M. Raza, Huo Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math. 17 (2019), 1615-1630. https://doi.org/10.1515/math-2019-0132
- T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- N.E. Cho, and V. Kumar, S.S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), 213-232. https://doi.org/10.1007/s41980-018-0127-5
- J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc. Japan 59 (2007), 707-727. https://doi.org/10.2969/jmsj/05930707
- S.M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59 (2019), 301-314. https://doi.org/10.5666/KMJ.2019.59.2.301
- M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
- H.-Y. Zhang and H. Tang and X.-M. Niu, Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, Symmetry 10 (2018), Article ID: 501. doi:10.3390/sym10100501
- S. Kanas and A. Lecko, On the Fekete-Szego problem and the domain of convexity for a certain class of univalent functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 10 (1990), 49-57.
- S. Kanas and H.E. Darwish, Fekete-Szego problem for starlike and convex functions of complex order, Appl. Math. Lett. 23 (2010), 777-782. https://doi.org/10.1016/j.aml.2010.03.008
- S. Kanas, An unified approach to the Fekete-Szego problem, Appl. Math. Comput. 218 (2012), 8453-8461. https://doi.org/10.1016/j.amc.2012.01.070
- F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
- Lei. Shi, H.M. Srivastava, M. Arif, H. Shehzad and K. Hassan, An Investigation of the Third Hankel Determinant Problem for Certain Subfamilies of Univalent Functions Involving the Exponential Function, Symmetry 11 (2019), Article ID: 598. doi:10.3390/sym11050598
- K. Lowner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. https://doi.org/10.1007/BF01170633
- W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis at the Nankai Institute of Mathematics (1992), 157-169.
- R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365-386. https://doi.org/10.1007/s40840-014-0026-8
- S.S. Miller and P.T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker Inc., New York, 2000.
- A. Naz, S. Nagpal and V. Ravichandran, Exponential starlikeness and convexity of confluent hypergeometric, Lommel, and Struve functions, Mediterr. J. Math. 17 (2020), 22 pp. https://doi.org/10.1007/s00009-019-1455-2
- H. Orhan, E. Deniz and D. Raducanu, The Fekete-Szego problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (2010), 283-295. https://doi.org/10.1016/j.camwa.2009.07.049
- C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Gottingen, 1975.
- S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014, Art. ID 984135, pp 3.
- C. Ramachandran, T. Soupramanien and J. Sokol, The Fekete-Szego functional associated with k-th root transformation using quasi-subordination, J. Anal. 28 (2020), 199-208. https://doi.org/10.1007/s41478-017-0059-0
- C. Ramachandran, T. Soupramanien and L. Vanitha, Estimation of coefficient bounds for the subclasses of analytic functions associated with Chebyshev polynomial, J. Math. Comput. Sci. 11 (2021), 3232-3243
- T.N. Shanmugam, C. Ramachandran and V. Ravichandran, Fekete-Szego problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43 (2006), 589-598. https://doi.org/10.4134/BKMS.2006.43.3.589
- T.N. Shanmugam and S. Sivasubramanian, On the Fekete-Szego problem for some subclasses of analytic functions, J. Inequal. Pure Appl. Math. 6 (2005), Article 71, pp 6.