References
- R.M. Ali, S.K. Lee, and S.R. Mondal, Inequalities on an extended Bessel function, J. Inequal. Appl. 66 (2018), 1-22.
- R.M. Ali, S.K. Lee, and S.R. Mondal, Starlikeness of a generalized Bessel function, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), 527-540.
- A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Math. 1994, Springer-Verlag, Berlin, 2010.
- A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), 155-178.
- A. Baricz, The radius of convexity of normalized Bessel functions of the first kind, Analysis and Applications 12 (2014), 485-509. https://doi.org/10.1142/S0219530514500316
- A. Baricz, E. Deniz, M. Caglar, H. Orhan, Differential subordinations involving generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 38 (2015), 1255-1280. https://doi.org/10.1007/s40840-014-0079-8
- A. Baricz, P.A. Kupan, R. Szasz, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (2014), 2019-2025. https://doi.org/10.1090/S0002-9939-2014-11902-2
- A. Baricz, S. Ponnusamy, Differential inequalities and Bessel functions, J. Math. Anal. Appl. 400 (2013), 558-567. https://doi.org/10.1016/j.jmaa.2012.11.050
- A. Baricz, S. Ponnusamy, S. Singh, Modified Dini functions: monotonicity patterns and functional inequalities, Acta Math. Hungar. 149 (2016), 120-142. https://doi.org/10.1007/s10474-016-0599-9
- A. Baricz, R. Szasz, Close-to-Convexity of Some Special Functions and Their Derivatives, Bull. Malays. Math. Sci. Soc. 39 (2016), 427-437. https://doi.org/10.1007/s40840-015-0180-7
- A. Baricz, E. Deniz and N. Yagmur, Close-to-convexity of normalized Dini functions, Math. Nachr. 289 (2016), 1721-1726. https://doi.org/10.1002/mana.201500009
- D. Bernoulli, Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae, Commentarii Academiae Scientiarum Imperialis Petropolitanae 7 (1734), 162-173.
- R.K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 11 (1960), 278-283. https://doi.org/10.1090/S0002-9939-1960-0111846-6
- L. Galue, A generalized Bessel function, Integral Transforms Spec. Funct. 14 (2003), 395-401. https://doi.org/10.1080/1065246031000074362
- S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. and Math. 105 (1999), 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7
- S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657.
- E. Kreyszig and J. Todd, The radius of univalence of Bessel functions , Illinois J. Math. 4 (1960), 143-149. https://doi.org/10.1215/ijm/1255455740
- F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark(eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
- R. Szasz and P.A. Kupan, About the univalence of the Bessel functions, Stud. Univ. Babes-Bolyai Math. 54 (2009), 127-132.
- N. Watson, A Treatise of the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995.