DOI QR코드

DOI QR Code

Methods of measuring presynaptic function with fluorescence probes

  • Received : 2021.02.01
  • Accepted : 2021.03.09
  • Published : 2021.12.31

Abstract

Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1C1C1008852).

References

  1. E.J. Adie, M.J. Francis, J. Davies, L. Smith, A. Marenghi, C. Hather, K. Hadingham, N. P. Michael, G. Milligan, S. Game, CypHer 5: A generic approach for measuring the activation and trafficking of G protein-coupled receptors in live cells. Assay Drug Dev Technol 1, 251-259 (2003)
  2. A.P. Alivisatos, W. Gu, C. Larabell, Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55-76 (2005)
  3. G.S. Baird, D.A. Zacharias, R.Y. Tsien, Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 11241-11246 (1999)
  4. J. Balaji, T.A. Ryan, Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl. Acad. Sci. U. S. A. 104, 20576-20581 (2007)
  5. C. Bats, L. Groc, D. Choquet, The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719-734 (2007)
  6. M. Beierlein, K.R. Gee, V.V. Martin, W.G. Regehr, Presynaptic calcium measurements at physiological temperatures using a new class of dextran-conjugated indicators. J. Neurophysiol. 92, 591-599 (2004)
  7. W.J. Betz, F. Mao, C.B. Smith, Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365-371 (1996)
  8. G.S. Bewick, W.J. Betz, Illumination partly reverses the postsynaptic blockade of the frog neuromuscular junction by the styryl pyridinium dye RH414. Proc. Biol. Sci. 258, 201-207 (1994)
  9. T. Bozza, J.P. McGann, P. Mombaerts, M. Wachowiak, In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42, 9-21 (2004)
  10. J. Brockhaus, B. Bruggen, M. Missler, Imaging and analysis of presynaptic calcium influx in cultured neurons using synGCaMP6f. Front Synaptic Neurosci. 11, 12 (2019)
  11. K.L. Budzinski, M. Zeigler, B.S. Fujimoto, S.M. Bajjalieh, D.T. Chiu, Measurements of the acidification kinetics of single SynaptopHluorin vesicles. Biophys. J. 101, 1580-1589 (2011)
  12. W.A. Catterall, A.P. Few, Calcium channel regulation and presynaptic plasticity. Neuron 59, 882-901 (2008)
  13. H.C. Chiang, W. Shin, W.D. Zhao, E. Hamid, J. Sheng, M. Baydyuk, P.J. Wen, A. Jin, F. Momboisse, L.G. Wu, Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat. Commun. 5, 3356 (2014)
  14. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, A. Triller, Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442-445 (2003)
  15. A. Denker, S.O. Rizzoli, Synaptic vesicle pools: An update. Front Synaptic Neurosci 2, 135 (2010)
  16. J.S. Dittman, T.A. Ryan, The control of release probability at nerve terminals. Nat. Rev. Neurosci. 20, 177-186 (2019)
  17. A.C. Dolphin, A. Lee, Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 21, 213-229 (2020)
  18. E. Dreosti, B. Odermatt, M.M. Dorostkar, L. Lagnado, A genetically encoded reporter of synaptic activity in vivo. Nat. Methods 6, 883-889 (2009)
  19. M.A. Gaffield, W.J. Betz, Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat. Protoc. 1, 2916-2921 (2006)
  20. Q. Gan, S. Watanabe, Synaptic vesicle endocytosis in different model systems. Front. Cell. Neurosci. 12, 171 (2018)
  21. C. Grienberger, A. Konnerth, Imaging calcium in neurons. Neuron 73, 862-885 (2012)
  22. N.G. Gubernator, H. Zhang, R.G. Staal, E.V. Mosharov, D.B. Pereira, M. Yue, V. Balsanek, P.A. Vadola, B. Mukherjee, R.H. Edwards, D. Sulzer, D. Sames, Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324, 1441-1444 (2009)
  23. S. Hallermann, Calcium channels for endocytosis. J. Physiol. 592, 3343-3344 (2014)
  24. P. Hoopmann, S.O. Rizzoli, W.J. Betz, Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Cold Spring Harb Protoc 2012, 77-83 (2012)
  25. Y. Hua, R. Sinha, C.S. Thiel, R. Schmidt, J. Huve, H. Martens, S.W. Hell, A. Egner, J. Klingauf, A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14, 833-839 (2011)
  26. R.E. Jackson, J. Burrone, Visualizing presynaptic calcium dynamics and vesicle fusion with a single genetically encoded reporter at individual synapses. Front Synaptic Neurosci 8, 21 (2016)
  27. H. Jung, S.Y. Kim, F.S. Canbakis Cecen, Y. Cho, S.K. Kwon, Dysfunction of mitochondrial Ca (2+) regulatory machineries in brain aging and neurodegenerative diseases. Front Cell Dev Biol 8, 599792 (2020)
  28. M. Kahms, J. Klingauf, Novel pH-sensitive lipid based Exo-endocytosis tracers reveal fast intermixing of synaptic vesicle pools. Front. Cell. Neurosci. 12, 18 (2018)
  29. E.T. Kavalali, E.M. Jorgensen, Visualizing presynaptic function. Nat. Neurosci. 17, 10-16 (2014)
  30. S. Kirischuk, N. Veselovsky, R. Grantyn, Relationship between presynaptic calcium transients and postsynaptic currents at single gammaaminobutyric acid (GABA) ergic boutons. Proc. Natl. Acad. Sci. U. S. A. 96, 7520-7525 (1999)
  31. H.J. Koester, B. Sakmann, Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. 529(Pt 3), 625-646 (2000)
  32. N.L. Kononenko, V. Haucke, Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85, 484-496 (2015)
  33. A.C. Kreitzer, K.R. Gee, E.A. Archer, W.G. Regehr, Monitoring presynaptic calcium dynamics in projection fibers by in vivo loading of a novel calcium indicator. Neuron 27, 25-32 (2000)
  34. S.K. Kwon, R. Sando 3rd, T.L. Lewis, Y. Hirabayashi, A. Maximov, F. Polleux, LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol. 14, e1002516 (2016)
  35. S. Lee, K.J. Jung, H.S. Jung, S. Chang, Dynamics of multiple trafficking behaviors of individual synaptic vesicles revealed by quantum-dot based presynaptic probe. PLoS One 7, e38045 (2012)
  36. J. Leitz, E.T. Kavalali, Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. Elife 3, e03658 (2014)
  37. H. Li, S.M. Foss, Y.L. Dobryy, C.K. Park, S.A. Hires, N.C. Shaner, R.Y. Tsien, L.C. Osborne, S.M. Voglmaier, Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front. Mol. Neurosci. 4, 34 (2011) 
  38. Y. Li, R.W. Tsien, pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047-1053 (2012)
  39. Z. Li, J. Burrone, W.J. Tyler, K.N. Hartman, D.F. Albeanu, V.N. Murthy, Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl. Acad. Sci. U. S. A. 102, 6131-6136 (2005)
  40. H. Martens, M.C. Weston, J.L. Boulland, M. Gronborg, J. Grosche, J. Kacza, A. Hoffmann, M. Matteoli, S. Takamori, T. Harkany, F.A. Chaudhry, C. Rosenmund, C. Erck, R. Jahn, W. Hartig, Unique luminal localization of VGAT-C terminus allows for selective labeling of active cortical GABAergic synapses. J. Neurosci. 28, 13125-13131 (2008)
  41. M. Martineau, A. Somasundaram, J.B. Grimm, T.D. Gruber, D. Choquet, J.W. Taraska, L.D. Lavis, D. Perrais, Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat. Commun. 8, 1412 (2017)
  42. S.B. Mazzone, N. Mori, M. Burman, M. Palovich, K.E. Belmonte, B.J. Canning, Fluorescent styryl dyes FM1-43 and FM2-10 are muscarinic receptor antagonists: Intravital visualization of receptor occupancy. J. Physiol. 575, 23-35 (2006)
  43. G. Miesenbock, D.A. De Angelis, J.E. Rothman, Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192-195 (1998)
  44. R.G. Morris, Elements of a neurobiological theory of hippocampal function: The role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829-2846 (2006)
  45. T. Nagai, A. Sawano, E.S. Park, A. Miyawaki, Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U. S. A. 98, 3197-3202 (2001)
  46. J. Nakai, M. Ohkura, K. Imoto, A high signal-to-noise Ca (2+) probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137-141 (2001)
  47. S. Namiki, H. Sakamoto, S. Iinuma, M. Iino, K. Hirose, Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Eur. J. Neurosci. 25, 2249-2259 (2007)
  48. J.A. Oliva Trejo, I. Tanida, C. Suzuki, S. Kakuta, N. Tada, Y. Uchiyama, Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Sci. Rep. 10, 9643 (2020)
  49. H. Park, Y. Li, R.W. Tsien, Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 335, 1362-1366 (2012)
  50. V. Perez Koldenkova, T. Nagai, Genetically encoded Ca (2+) indicators: Properties and evaluation. Biochim. Biophys. Acta 1833, 1787-1797 (2013)
  51. A.H. Ponsford, T.A. Ryan, A. Raimondi, E. Cocucci, S.A. Wycislo, F. Frohlich, L.E. Swan, M. Stagi, Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy, 1-19 (2020), Online ahead of print (2020)
  52. J. Raingo, M. Khvotchev, P. Liu, F. Darios, Y.C. Li, D.M. Ramirez, M. Adachi, P. Lemieux, K. Toth, B. Davletov, E.T. Kavalali, VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat. Neurosci. 15, 738-745 (2012)
  53. D.M. Ramirez, M. Khvotchev, B. Trauterman, E.T. Kavalali, Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121-134 (2012)
  54. M. Rathje, H. Fang, J.L. Bachman, V. Anggono, U. Gether, R.L. Huganir, K.L. Madsen, AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 110, 14426-14431 (2013)
  55. N. Rebola, M. Reva, T. Kirizs, M. Szoboszlay, A. Lorincz, G. Moneron, Z. Nusser, D.A. DiGregorio, Distinct Nanoscale Calcium Channel and synaptic vesicle topographies contribute to the diversity of synaptic function. Neuron 104(693-710), e699 (2019)
  56. M. Reifenrath, E. Boles, A superfolder variant of pH-sensitive pHluorin for in vivo pH measurements in the endoplasmic reticulum. Sci. Rep. 8, 11985 (2018)
  57. D.A. Richards, C. Guatimosim, W.J. Betz, Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551-559 (2000)
  58. B.R. Rost, F. Schneider, M.K. Grauel, C. Wozny, C. Bentz, A. Blessing, T. Rosenmund, T.J. Jentsch, D. Schmitz, P. Hegemann, C. Rosenmund, Optogenetic acidification of synaptic vesicles and lysosomes. Nat. Neurosci. 18, 1845-1852 (2015)
  59. D. Sames, M. Dunn, R.J. Karpowicz Jr., D. Sulzer, Visualizing neurotransmitter secretion at individual synapses. ACS Chem. Neurosci. 4, 648-651 (2013)
  60. C. Sgobio, D.A. Kupferschmidt, G. Cui, L. Sun, Z. Li, H. Cai, D.M. Lovinger, Optogenetic measurement of presynaptic calcium transients using conditional genetically encoded calcium indicator expression in dopaminergic neurons. PLoS One 9, e111749 (2014)
  61. W. Shin, L. Ge, G. Arpino, S.A. Villarreal, E. Hamid, H. Liu, W.D. Zhao, P.J. Wen, H.C. Chiang, L.G. Wu, Visualization of membrane pore in live cells reveals a dynamic-pore theory governing fusion and endocytosis. Cell 173(934-945), e912 (2018)
  62. K. Silm, J. Yang, P.F. Marcott, C.S. Asensio, J. Eriksen, D.A. Guthrie, A.H. Newman, C.P. Ford, R.H. Edwards, Synaptic vesicle recycling pathway determines neurotransmitter content and release properties. Neuron 102(786-800), e785 (2019)
  63. M. Singh, B. Lujan, R. Renden, Presynaptic GCaMP expression decreases vesicle release probability at the calyx of held. Synapse 72, e22040 (2018)
  64. N.A. Steinmetz, C. Buetfering, J. Lecoq, C.R. Lee, A.J. Peters, E.A.K. Jacobs, P. Coen, D.R. Ollerenshaw, M.T. Valley, S.E.J. de Vries, M. Garrett, J. Zhuang, P.A. Groblewski, S. Manavi, J. Miles, C. White, E. Lee, F. Griffin, J.D. Larkin, K. Roll, S. Cross, T.V. Nguyen, R. Larsen, J. Pendergraft, T. Daigle, B. Tasic, C.L. Thompson, J. Waters, S. Olsen, D.J. Margolis, H. Zeng, M. Hausser, M. Carandini, K.D. Harris, Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines. eNeuro 4 0207-17 (2017)
  65. A. Suresh, A. Dunaevsky, Relationship between synaptic AMPAR and spine dynamics: Impairments in the FXS mouse. Cereb. Cortex 27, 4244-4256 (2017)
  66. L. Tian, S.A. Hires, T. Mao, D. Huber, M.E. Chiappe, S.H. Chalasani, L. Petreanu, J. Akerboom, S.A. McKinney, E.R. Schreiter, C.I. Bargmann, V. Jayaraman, K. Svoboda, L.L. Looger, Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875-881 (2009)
  67. R.Y. Tsien, A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527-528 (1981)
  68. R.Y. Tsien, T.J. Rink, M. Poenie, Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium 6, 145-157 (1985)
  69. S. Villarreal, S.H. Lee, L.G. Wu, Measuring synaptic vesicle endocytosis in cultured hippocampal neurons. J Vis Exp. 4, 55862 (2017)
  70. J. Widagdo, Y.J. Chai, M.C. Ridder, Y.Q. Chau, R.C. Johnson, P. Sah, R.L. Huganir, V. Anggono, Activity-dependent Ubiquitination of GluA1 and GluA2 regulates AMPA receptor intracellular sorting and degradation. Cell Rep. 10, 783-795 (2015)
  71. X.S. Wu, S.H. Lee, J. Sheng, Z. Zhang, W.D. Zhao, D. Wang, Y. Jin, P. Charnay, J.M. Ervasti, L.G. Wu, Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses. Neuron 92, 1020-1035 (2016)
  72. X.S. Wu, L.G. Wu, The yin and yang of calcium effects on synaptic vesicle endocytosis. J. Neurosci. 34, 2652-2659 (2014)
  73. R.M. Wyatt, R.J. Balice-Gordon, Heterogeneity in synaptic vesicle release at neuromuscular synapses of mice expressing synaptopHluorin. J. Neurosci. 28, 325-335 (2008)
  74. Q. Zhang, Imaging single synaptic vesicles in mammalian central synapses with quantum dots. Methods Mol. Biol. 1026, 57-69 (2013)
  75. Q. Zhang, Y.Q. Cao, R.W. Tsien, Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl. Acad. Sci. U. S. A. 104, 17843-17848 (2007)
  76. Q. Zhang, Y. Li, R.W. Tsien, The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448-1453 (2009)