Acknowledgement
This work was supported by the National Natural Science Foundation of China (52104125), the Fundamental Research Funds for the Central Universities (No. B210201001) and the Technology top talent support project of Guizhou Provincial Education Department ([2020]155), Research and development project of Guizhou University of Engineering Science (Grant No: G2018016), Bijie city science and technology plan joint fund project ([2019]26).
References
- Andrew, M. and Oldrich, H. (2017), "Theory and calibration of the Pierre 2 stochastic rock fall dynamics simulation program", Can. Geotech. J., 54(1), 18-30. https://doi.org/10.1139/cgj-2016-0039.
- Anna, E., Klaus, T., Anna, G. and Corinna, W. (2017), "Efficient discrete modelling of composite structures for rockfall protection", Comput. Geotech., 87, 99-114. https://doi.org/10.1016/j.compgeo.2017.02.005.
- Akin, M., Dincer, I., Ok, A.O., Orhan, A., Akin, M.K. and Topal, T. (2021), "Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing", Eng. Geol., 283, 106001. https://doi.org/10.1016/j.enggeo.2021.106001.
- Bourrier, F., Dorren, L., Nicot, F., Berger, F. and Darve, F. (2009), "Toward objective rockfall trajectory simulation using a stochastic impact model", Geomorphology, 110(3), 68-79. https://doi.org/10.1016/j.geomorph.2009.03.017.
- Buzzi, O., Giacomini, A. and Spadari, M. (2012), "Laboratory investigation on high values of restitution coefficients", Rock Mech. Rock Eng., 45, 35-43. https://doi.org/10.1007/s00603-011-0183-0.
- Bhatti, A.Q. (2018), "Computational modeling of energy dissipation characteristics of expanded polystyrene (EPS) cushion of reinforce concrete (RC) bridge girder under rockfall impact", Int. J. Civ. Eng., 16(11), 1-8. https://doi.org/10.1007/s40999-018-0304-1.
- Bertolo, P., Oggeri, C. and Peila, D. (2009), "Full-scale testing of draped nets for rock fall protection", Can. Geotech. J., 46(3), 306-317. https://doi.org/10.1139/T08-126.
- Fanos, A.M. and Pradhan, B. (2019), "A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS", Catena, 172, 435-450. https://doi.org/10.1016/j.catena.2018.09.012.
- Gischig, V.S., Hungr, O., Mitchell, A. and Bourrier, F. (2014), "Pierre3D: A 3D stochastic rockfall simulator based on random ground roughness and hyperbolic restitution factors", Can. Geotech. J., 52(9), 1360-1373. https://doi.org/10.1139/cgj-2014-0312.
- Gao, G. and Meguid, M.A. (2018a.), "Modeling the impact of a falling rock cluster on rigid structures", Int. J. Geomech., 18(2), 1-15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001045.
- Gao, G. Meguid, M.A. (2018b), "On the role of sphericity of falling rock clusters- Insights from experimental and numerical investigations", Landslides, 15(2), 219-232. https://doi.org/10.1007/s10346-017-0874-z
- Hu, J., Li, S.C., Shi, S.S., Li, L.P., Zhang, Q., Liu, H.L. and He, P. (2018), "Experimental study on parameters affecting the runout range of rockfall", Adv. Civ. Eng., 1-9. https://doi.org/10.1155/2018/4739092.
- James, G. (2015), "Rock-shape and its role in rockfall dynamics", Ph.D. Dissertation, Durham University, Durham., U.K.
- Koo, R.C.H., Kwan, J.S.H., Lam, C., Ng, C.W.W., Yiu, J., Choi, C.E., Ng, A.K.L., Ho, K.K.S. and Pun, W.K. (2017), "Dynamic response of flexible rockfall barriers under different loading geometries", Landslides, 14(3), 905-916. https://doi.org/10.1007/s10346-016-0772-9.
- Koleini, M., Van, R.J.L. (2011), "Falling rock hazard index: A case study from the Marun Dam and power plant, south-western Iran", B. Eng. Geol. Environ., 70(2), 279-290. https://doi.org/10.1007/s10064-010-0327-6.
- Lam, C., Yong, A.C.Y., Kwan, J.S.H. and Lam, N.T.K. (2018), "Overturning stability of L-shaped rigid barriers subjected to rockfall impacts", Landslides., 15(7), 1347-1357. https://doi.org/10.1007/s10346-018-0957-5.
- Li, L.P., Sun, S.Q., Li, S.C., Zhang, Q.Q., Hu, C. and Shi, S.S. (2016), "Coefficient of restitution and kinetic energy loss of Rockfall impacts", KSCE J. Civ. Eng., 20(6), 2297-2307. https://doi.org/10.1007/s12205-015-0221-7.
- Lambert, S. and Kister, B. (2018), "Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion", Eng. Geol., 243, 1-9. https://doi.org/10.1016/j.enggeo.2018.06.008.
- Laura, C.J., Elena, B.F., Daniel, C.F. and Diego, F. (2018) "Use of explicit FEM models for the structural and parametrical analysis of rockfall protection barriers", Eng. Struct., 166, 212-216. https://doi.org/10.1016/j.engstruct.2018.03.064.
- Maerz, N.H., Youssef, A.M., Pradhan, B. and Bulkhi, A. (2015), "Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi Arabia", Arab. J. Geosci., 8(5), 2633-2651. https://doi.org/10.1007/s12517-014-1423-x.
- Megan, V.V., Hutchinson, D.J., Bonneau, D.A., Sala, Z., Ondercin, M. and Lato, M. (2018), "Combining temporal 3D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors", Nat. Hazard. Earth. Syst., 18(8), 2295-2308. https://doi.org/10.5194/nhess-18-2295-2018.
- Rosa, M.M., Inmaculada, G.M., Paola, R., Gerardo, H., Roberto, S., Joan, R., Raul, A. and Federica, F. (2016), "Calibration and validation of rockfall modelling at regional scale: application along a roadway in Mallorca (Spain) and organization of its management", Landslides, 13(4), 751-763. https://doi.org/10.1007/s10346-015-0602-5.
- Saroglou, H., Marinos, V., Marinos, P. and Tsiambaos, G. (2012), "Rockfall hazard and risk assessment: An example from a high promontory at the historical site of Monemvasia, Greece", Nat. Hazard. Earth. Syst., 12(6), 1823-1836. https://doi.org/10.5194/nhess-12-1823-2012.
- Spadari, M., Giacomini, A., Buzzi, O., Fityus, S. and Giani, G.P. (2012), "In situ rock fall tests in New South Wales, Australia", Int. J. Rock Mech. Min. Sci., 49, 84-93. https://doi.org/10.1016/j.ijrmms.2011.11.013.
- Toe, D., Mentani, A., Govoni, L., Bourrier, F., Gottardi, G. and Lambert, S. (2018), "Introducing Meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers", Rock Mech. Rock Eng., 51(4), 1097-1109. https://doi.org/10.1007/s00603-017-1394-9.
- Tan, D.Y., Yin, J.H., Qin, J.Q., Zhu, Z.H. and Feng, W.Q. (2018), "Large-scale physical modeling study on the interaction between rockfall and flexible barrier", Landslides, 15(12), 2487-2497. https://doi.org/10.1007/s10346-018-1058-1.
- Tao, Z.G., Geng, Q., Zhu, C., He, M.C., Cai, H., Pang, S.H. and Meng, X.Z. (2019), "Investigation of the mechanical mechanisms of large-scale toppling failure on counter-inclined rock slopes", J. Geophys. Eng., 16, 541-558. https://doi.org/10.1093/jge/gxz020.
- Tao, Z.G., Zhu, C., He, M.C. and Liu, K.M. (2020), "Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine", Geomech. Geophys. Geo. 6, 36. https://doi.org/10.1007/s40948-020-00159-9.
- Xu, H., Gentilini, C., Yu, Z.X., Qi, X. and Zhao, S.C. (2018), "An energy allocation based design approach for flexible rockfall protection barriers", Eng. Struct., 173, 831-852. https://doi.org/10.1016/j.engstruct.2018.07.018.
- Yilmaz, I., Yildirim, M. and Keskin, I. (2008), "A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software", B. Eng. Geol. Environ., 67, 547-554. https://doi.org/10.1007/s10064-008-0174-x.
- Yu, Z.X., Luo, L.R., Liu, C., Guo, L.P., Qi, X. and Zhao, L. (2021), "Dynamic response of flexible rockfall barriers with different block shapes", Landslides, 1-17. https://doi.org10.1007/s10346-021-01658-w
- Zhang, G., Tang, H., Xiang, B., Karakus, B. and Wu J.P. (2015), "Theoretical study of rockfall impacts based on logistic curves", Int. J. Rock Mech. Min. Sci., 78, 133-143. https://doi.org/10.1016/j.ijrmms.2015.06.001.
- Zhu, C., Tao, Z., Yang, S. and Zhao, S. (2019), "V shaped gully method for controlling rockfall on high-steep slopes in China", B. Eng. Geol. Environ., 78, 2731-2747. https://doi.org/10.1007/s10064-018-1269-7.
- Zhu, C., Wang D.S., Xia, X., Tao, Z.G., He, M.C. and Cao, C. (2018), "The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts", Nat. Hazard. Earth. Syst., 18(6), 1811-1823. https://doi.org/10.5194/nhess-18-1811-2018.
- Zhu, C., He, M.C., Karakus, M., Cui, X.B. and Tao, Z.G. (2020), "Investigating toppling failure mechanism of anti-dip layered slope due to excavation by physical modelling", Rock Mech. Rock Eng., 53(11), 5029-5050. https://doi.org/10.1007/s00603-020-02207-y.
- Zhu, C., He, M.C., Karakus, M., Zhang, X.H. and Guo, Z. (2021a), "The collision experiment between rolling stones of different shapes and protective cushion in open-pit mines", J. Mt. Sci. Eng., 18(5), 1391-1403. https://doi.org/10.1007/s11629-020-6380-0.
- Zhu, C., He, M.C., Yin, Q. and Zhang, X.H. (2021b), "Numerical simulation of rockfalls colliding with a gravel cushion with varying thicknesses and particle sizes", Geomech. Geophys. Geo., 7(1), 1-15. https://doi.org/10.1007/s40948-020-00203-8.
- Zhu, C., He, M.C., Karakus, M., Zhang, X.H. and Tao, Z.G. (2021c), "Numerical simulations of the failure process of anaclinal slope physical model and control mechanism of negative Poisson's ratio cable", B. Eng. Geol. Environ., 80, 3365-3380. https://doi.org/10.1007/s10064-021-02148-y.
- Zhao, P., Xie, L.Z., Li, L.P., Liu, Q. and Yuan, S. (2018), "Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and EPE", Eng. Struct., 175, 386-398. https://doi.org/10.1016/j.engstruct.2018.08.046.
Cited by
- Spatial Pattern of Underground Space Development in Major Cities in China: Evaluation and Analysis vol.2021, 2021, https://doi.org/10.1155/2021/2125776
- Study on the Formation Mechanism of Rock Burst Caused by Seam Floor Slip under an Ultrathick Conglomerate vol.2021, 2021, https://doi.org/10.1155/2021/9285832