DOI QR코드

DOI QR Code

Backbone assignment and structural analysis of anti-CRISPR AcrIF7 from Pseudomonas aeruginosa prophages

  • Kim, Iktae (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Suh, Jeong-Yong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2021.09.12
  • Accepted : 2021.09.18
  • Published : 2021.09.20

Abstract

The CRISPR-Cas system provides adaptive immunity for bacteria and archaea against invading phages and foreign plasmids. In the Class 1 CRISPR-Cas system, multi-subunit Cas proteins assemble with crRNA to bind to DNA targets. To disarm the bacterial defense system, bacteriophages evolved anti-CRISPR (Acr) proteins that actively inhibit the host CRISPR-Cas function. Here we report the backbone resonance assignments of AcrIF7 protein that inhibits the type I-F CRISPR-Cas system of Pseudomonas aeruginosa using triple-resonance nuclear magnetic resonance spectroscopy. We employed various computational methods to predict the structure and binding interface of AcrIF7, and assessed the model with experimental data. AcrIF7 binds to Cas8f protein via flexible loop regions to inhibit target DNA binding, suggesting that conformational heterogeneity is important for the Cas-Acr interaction.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development funded by Rural Development Administration (PJ01495901), the Creative-Pioneering Researchers Program through Seoul National University (500-20200255), and the Korea Basic Science Institute Program (C140440). We thank the high-field NMR facility at the Korea Basic Science Institute, and the National Center for Inter-University Research Facilities.

References

  1. R. Jansen, J. D. v. Embden, W. Gaastra and L. M. Schouls, Mol. Microbiol. 43, 1565 (2002). https://doi.org/10.1046/j.1365-2958.2002.02839.x
  2. R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero and P. Horvath, Science 315, 1709 (2007). https://doi.org/10.1126/science.1138140
  3. S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis, A. P. Snijders, M. J. Dickman, K. S. Makarova, E. V. Koonin and J. van der Oost, Science 321, 960 (2008). https://doi.org/10.1126/science.1159689
  4. E. V. Koonin, K. S. Makarova and F. Zhang, Curr. Opin. Microbiol. 37, 67 (2017). https://doi.org/10.1016/j.mib.2017.05.008
  5. K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah, S. J. Saunders, R. Barrangou, S. J. Brouns, E. Charpentier, D. H. Haft, P. Horvath, S. Moineau, F. J. Mojica, R. M. Terns, M. P. Terns, M. F. White, A. F. Yakunin, R. A. Garrett, J. van der Oost, R. Backofen and E. V. Koonin, Nat. Rev. Microbiol. 13, 722 (2015). https://doi.org/10.1038/nrmicro3569
  6. J. E. Samson, A. H. Magadan, M. Sabri and S. Moineau, Nat. Rev. Microbiol. 11, 675 (2013). https://doi.org/10.1038/nrmicro3096
  7. A. R. Davidson, W. T. Lu, S. Y. Stanley, J. Wang, M. Mejdani, C. N. Trost, B. T. Hicks, J. Lee and E. J. Sontheimer, Annu. Rev. Biochem. 89, 309 (2020). https://doi.org/10.1146/annurev-biochem-011420-111224
  8. T. Wiegand, S. Karambelkar, J. Bondy-Denomy and B. Wiedenheft, Annu. Rev. Microbiol. 74, 21 (2020). https://doi.org/10.1146/annurev-micro-020518-120107
  9. N. Jia and D. J. Patel, Nat. Rev. Mol. Cell Biol. 22, 563 (2021). https://doi.org/10.1038/s41580-021-00371-9
  10. A. Pawluk, R. H. Staals, C. Taylor, B. N. Watson, S. Saha, P. C. Fineran, K. L. Maxwell and A. R. Davidson, Nat. Microbiol. 1, 1 (2016).
  11. I. Kim, J. Koo, S. Y. An, S. Hong, D. Ka, E.-H. Kim, E. Bae and J.-Y. Suh, Nucleic Acids Res. 48, 9959 (2020). https://doi.org/10.1093/nar/gkaa690
  12. C. Gabel, Z. Li, H. Zhang and L. Chang, Nucleic Acids Res. 49, 584 (2021). https://doi.org/10.1093/nar/gkaa1199
  13. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax, J. Biomol. NMR 6, 277 (1995). https://doi.org/10.1007/BF00197809
  14. B. A. Johnson and R. A. Blevins, J. Biomol. NMR 4, 603 (1994). https://doi.org/10.1007/BF00404272
  15. W. Lee, M. Tonelli and J. L. Markley, Bioinformatics 31, 1325 (2015). https://doi.org/10.1093/bioinformatics/btu830
  16. Y. Shen, O. Lange, F. Delaglio, P. Rossi, J. M. Aramini, G. Liu, A. Eletsky, Y. Wu, K. K. Singarapu and A. Lemak, Proc. Natl. Acad. Sci. USA. 105, 4685 (2008). https://doi.org/10.1073/pnas.0800256105
  17. O. F. Lange, P. Rossi, N. G. Sgourakis, Y. Song, H.-W. Lee, J. M. Aramini, A. Ertekin, R. Xiao, T. B. Acton and G. T. Montelione, Proc. Natl. Acad. Sci. USA. 109, 10873 (2012). https://doi.org/10.1073/pnas.1203013109
  18. Y. Shen, F. Delaglio, G. Cornilescu and A. Bax, J. Biomol. NMR 44, 213 (2009). https://doi.org/10.1007/s10858-009-9333-z
  19. M. V. Berjanskii and D. S. Wishart, J. Am. Chem. Soc. 127, 14970 (2005). https://doi.org/10.1021/ja054842f
  20. B. Kim and J. H. Kim, J. Kor. Magn. Reson. Soc. 25, 8 (2021). https://doi.org/10.6564/JKMRS.2021.25.1.008
  21. D.-H. Kang, J.-J. Yi, D.-W. Sim, J.-W. Park, S.-H. Lee, E.-H. Kim, Y.-H. Jeon, W. S. Son, H.-S. Won and J.-H. Kim, J. Kor. Magn. Reson. Soc. 24, 1 (2020). https://doi.org/10.6564/JKMRS.2020.24.1.001
  22. I. Kim, M. Jeong, D. Ka, M. Han, N.-K. Kim, E. Bae and J.-Y. Suh, Sci. Rep. 8, 1 (2018).
  23. I. Kim, N.-K. Kim and J.-Y. Suh, J. Kor. Magn. Reson. Soc. 22, 71 (2018). https://doi.org/10.6564/JKMRS.2018.22.3.071
  24. S. Neal, A. M. Nip, H. Zhang and D. S. Wishart, J. Biomol. NMR 26, 215 (2003). https://doi.org/10.1023/A:1023812930288
  25. Y. Shen and A. Bax, J. Biomol. NMR 38, 289 (2007). https://doi.org/10.1007/s10858-007-9166-6