DOI QR코드

DOI QR Code

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method

CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구

  • Whang, Dae-jung (Korea Center for International Maritime Safety Cooperation) ;
  • Park, Sang-kyun (Division of Marine System Engineering, Korea Maritime & Ocean University) ;
  • Jee, Jae-hoon (Division of Korea Coast Guard, Mokpo National Maritime University) ;
  • Bang, Eun-shin (Department of Marine Engineering, Korea Maritime & Ocean University) ;
  • Oh, Cheol (Division of Marine System Engineering, Korea Maritime & Ocean University)
  • 황대중 ((재)한국해사안전국제협력센터) ;
  • 박상균 (한국해양대학교 기관시스템공학부) ;
  • 지재훈 (목포해양대학교 해양경찰학부) ;
  • 방은신 (한국해양대학교 대학원 기관시스템공학과) ;
  • 오철 (한국해양대학교 기관시스템공학부)
  • Received : 2021.06.09
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

IMO에서는 선박으로부터 온실가스 감축을 위해 선박의 에너지효율 증진에 관한 논의를 진행하고 있다. 현재, 선박으로부터 발생되는 폐열을 이용한 ORC 발전 시스템을 적용함으로써 선박으로부터 높은 에너지 변환 효율을 기대할 수 있다. 이 기술은 물보다 더 낮은 온도 범위에서 증발하는 프레온 또는 탄화수소 계통의 유기 매체를 작동 유체로 사용한다. 이를 통해 상대적으로 낮은 저온에서 증기(기체)를 생성 및 동력을 발생시킬 수 있다. 본 연구에서는 유기 랭킨 사이클인 ORC 발전 시스템에서 냉매와 폐열 사이 열·유동해석(Analysis of Heat flow)을 3D 시뮬레이션 기법을 이용하여 구조물의 내·외부에 흐르는 유체가 온도 변화, 속도 변화, 압력 변화 및 질량 변화를 통해서 구조물에 어떤 영향을 미치는지를 분석하고자 하며, 동 연구는 이 기법을 이용하여 ORC 발전 시스템에서 냉매와 선박 주기관의 배기가스로부터 일어나는 열교환기의 열전달을 해석하였다.

Keywords

Acknowledgement

이 논문은 2020년도 연구개발특구진흥재단의 재원으로 기술사업화 역량강화사업의 지원을 받아 수행된 연구임(2020-0220-01).

References

  1. Aspen HYSYS Thermodynamics COM Interface(2020), Aspen Technology, Inc,
  2. Bao, J., Y. Lin, R. Zhang, N. Zhang, and G. He(2017), Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system, Energy Conversion and Management, Vol. 143, pp. 312-325. https://doi.org/10.1016/j.enconman.2017.04.018
  3. International Energy Outlook(2017), EIA (U.S. Energy Information Administration), www.eia.gov/ieo/.
  4. Jung, R. T.(2011), Recent International Development on the Technical and Operational Measures of IMO's CO2 Emission Control From Ships, The Korean Society for Marine Environment and Energy, Vol. 14, No. 1, pp. 65-71. https://doi.org/10.7846/JKOSMEE.2011.14.1.065
  5. Kim, K. H.(2011), Study of Working Fluids on Thermodynamic Performance of Organic Rankine Cycle (ORC), Korean Hydrogen and New Energy Society, Vol. 22, No. 2, pp. 223-231.
  6. Kim, K. H., C. H. Han, and G. M. Kim(2011), Study on Organic Rankine Cycle (ORC) for Maximum Power Extraction from Low-Temperature Energy Source, The Korean Solar Energy Society, Vol. 31, No. 3, pp. 73-79. https://doi.org/10.7836/kses.2011.31.3.073
  7. Oh, C. and Y. U. Song(2012), A Study on the Ship's ORC Power System using Seawater Temperature Difference, Journal of Korean Navigation and Port Research, Vol. 36, No. 5, pp. 349-355. https://doi.org/10.5394/KINPR.2012.36.5.349
  8. Sung, M. J. and J. Ahn(2013), Channel Aspect Ratio on Flow and Heat Transfer Characteristic of Primary Surface Heat Exchanger for ORC, Journal of Computational Fluids Engineering, Vol. 18, No. 4, pp. 35-40. https://doi.org/10.6112/kscfe.2013.18.4.035
  9. Song, Y. U.(2018), Study on the ORC Power Generation System in Marine Engines of Various Sizes, The Korean Society of Marine Engineering, Vol. 42, No. 3, pp. 148-154.