• Title/Summary/Keyword: Waste Heat

Search Result 1,024, Processing Time 0.028 seconds

A Study on the Consumers' Perception of Agricultural Products Using Nuclear Power Plants Waste Heat (원자력 발전소 온배수 이용 농산물에 대한 소비자 인식조사)

  • Heo, Seung-Wook
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.369-379
    • /
    • 2018
  • This study examines consumers' perception of agricultural products using nuclear power plants waste heat. This study surveyed 348 consumers and found that presenting information about safety of waste heat utilization increased appropriacy of waste heat; after providing the information, the percentage of respondents in favor of using waste heat increased 27.5% point from 38.3% to 65.8%. The most important reason against using waste heat was because it threatened the safety of agricultural products, and the most important reason for its support was to reduce farm production costs. The purchase intention for agricultural products using waste heat had risen by at least 10% point after providing the information about safety of waste heat. Those means that it important provision of accurate and reliable information on the safety of waste heat to encourage the utilization of waste heat from nuclear power plants. Purchase intention for flowers using waste heat was most, followed by vegetables, fruits (including fruits and vegetables).

An Investigation Study on Fact of Waste Heat of Domestic Industry (국내 산업폐열 현황에 대한 조사연구)

  • 박일환;박준태;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.811-816
    • /
    • 2002
  • Waste heat exhausted from seven types of the domestic industry was surveyed, which include food, fibre, paper & wood, chemical, ceramics, metalworking and others. The databases of waste heat for each industry were made by using ACCESS software of Microsoft, and data were analyzed to get correlation between waste heat and purchase energy. The volume of usable waste heat is estimated to be 9,169,000 TOE in the year of 2000, when the minimum available temperature is set as $100^{\circ}C$ for waste gas, $30^{\circ}C$ for hot water and $100^{\circ}C$ for steam considering the condition of waste heat exhausting facilities and surroundings. This volume of waste heat is approximately 11.9 percent of the purchase energy of the domestic industry.

A Study on the Characteristics of Waste Heat from the Industrial Complexes for Residential and Commercial Sectors (가정.상업부문 이용을 위한 산업체 폐열특성 연구)

  • 최영찬;박태준;홍재창;조선영
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.242-247
    • /
    • 1999
  • The characteristics of waste heat effluents from 11 industrial complexes of 7 areas were analyzed to investigate the possibility of waste heat recovery of huge amount of waste heat producing from various industrial complexes. This study presents a part of the research work for the industrial waste heat for development of energy integrated network system in broad city area, which will utilize industrial waste heat for residential and commercial areas, where they are located at some distances from the complexes. The amount of waste heat from the investigated complexes was detected as 148,913 TOE/year. However, It was analyzed 83% of the waste heat was analyzed the temperature range from 0$^{\circ}C$ to 200$^{\circ}C$. Also, it was evaluated that 82% of waste heat was exhausted by flue gases. Especially, the characteristics of waste heat for the areas where most heat concentrated, such as Tae-gu industrial complex, Ul-san petrochemitry complex, Yio-chun petrochemistry complex, and Chun-ju industrial complex were investigated more precisely. Total amount of waste heat discharged from these four areas were analyzed 114,402 TOE/year, which was occupied as 77% of the total waste heat for the studied areas, and 87% of the waste heat from the industries was exhausted by flue gaseous phase and temperature range was from 0$^{\circ}C$ to 200$^{\circ}C$ 18.1 million TOE/year waste heat was released from the fossil fuel power plants, however 95% of waste heat was analyzed as cooling water from surface condensers at power plants. The temperature range was measured from 27$^{\circ}C$ to 34$^{\circ}C$, which are unable to utilize due to its low temperature. Otherwise, 5% (894,800 TOE/year) waste heat released from power plants were observed as flue gas, which temperature ranged from 90$^{\circ}C$ to 170$^{\circ}C$.

  • PDF

Design of an Intelligent Controller for Waste Water Heat Pump Recycled Energy Systems

  • Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.375-378
    • /
    • 2011
  • This study is intended to realize an intelligent controller using fuzzy control algorithms in order to recycle energy by recycling the waste water heat discharged by waste water heat collection boilers. Using waste water inflow temperature changes and waste water inflow amount changes as parameters, we present characteristic curves of the number of compressors being operated at fixed speeds and the temperature of hot water being discharged. We propose an intelligent controller that determines the optimum number of compressors being operated at fixed speeds in real time by measuring changes in the temperature and amount of waste water inflows in order to minimize the number of compressors being operated at fixed speeds relative to the waste water load flowing into the waste water heat collection boiler.

A Study on The Drying and Hot Water System Using Condensation Waste Heat (응축폐열을 이용한 건조 및 온수장치에 관한 연구)

  • Park N. H.;Koh H. Y.;Jeong J. W.;Kang T. S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.4
    • /
    • pp.362-371
    • /
    • 1986
  • In the normal Refrigeration process, the condensation heat of refrigerant s not been used because of its low-temperature waste heat. To recover the condensation waste heat of R-12 refrigerator, a drying and hot water system was designed and experimented. The results obtained were summarized as follows: 1. As the temperature a temosphere was increased, the temperature of discharge gas of compressor was increased. And the temperature was $80-84^{\circ}C$ for air condensing type and was $68-71^{\circ}C$ for water condensing type during summer. 2. The condensation waste heat could be obtained up to $50-55^{\circ}C$ of drying heat-source and Hot water in summer. In this case, recovered rate was about $73\%$. And the more temperature of drying Heat-source and Hot water were increased, the more a recovered rate were decreased. 3. When comparing drying characteristics of Agro-products in dryer of waste heat utilization and Hot air, there was no quality difference in products. But drying time of the former was 3 Hours longer than the latter. 4. The condensation waste heat of compressor could be applied into the drying of marine products, the predrying of agro-products and making hot water. And showed high possibility of the waste heat using in low-temperature storage.

  • PDF

Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe (자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험)

  • 이욱현;이종현;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

Conceptual design of an expander for waste heat recovery of an automobile exhaust gas (자동차 배기가스 폐열 회수용 팽창기 개념설계)

  • Kim, Hyun-Jae;Kim, You-Chan;Kim, Hyun-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.237-242
    • /
    • 2009
  • A steam Rankine cycle was considered to recover waste heat from the exhaust gas of an automobile. Conceptual design of a swash plate type expander was practiced to convert steam heat to shaft power. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 1.93 kW from the exhaust gas waste heat of 20 kW. The expander output increased linearly accordingly to the amount of exhaust gas waste heat in the range of from 10-40 kW, and the Rankine cycle efficiency was more or less constant at about 9.6% regardless of the waste heat amount.

  • PDF

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

A study on the steam boiler with high compression waste heat recovery system (고압축 폐열회수장치를 구비한 증기보일러에 관한 연구)

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • An electric steam boiler equipped with a condensate recovery system, which stores the condensate generated after using steam in steam washers, steam cookers, steam irons, and steam cleaners in a condensate tank and supplies compressed air to the condensate tank so that the condensate is recovered to the boiler by the pressure of the compressed air, was studied. In the results of this study, the heat energy balance between the quantity of the heat generated by the non-metallic surface heating element and the quantity of the heat absorbed by the water was good in a range of ${\pm}5%$. In addition, the heat transfer rate increased in proportion to the electric power of the surface heating element heater, the waste heat energy was normally recovered by the recovery of the condensate of the steam boiler equipped with the high compression waste heat recovery system, and the recovery rate of the waste heat exhibited 23%.