DOI QR코드

DOI QR Code

Comparison of Commercial Organic Solvent Nanofiltration (OSN) Membrane Performance

상용 유기용매 나노여과막 성능분석 및 비교

  • Kim, Sumin (Energy & Chemical Engineering Department, Incheon National University) ;
  • Song, Guntak (Energy & Chemical Engineering Department, Incheon National University) ;
  • Kim, Jeong F. (Energy & Chemical Engineering Department, Incheon National University)
  • 김수민 (에너지화학공학과, 인천대학교) ;
  • 송건탁 (에너지화학공학과, 인천대학교) ;
  • 김정 (에너지화학공학과, 인천대학교)
  • Received : 2021.08.24
  • Accepted : 2021.08.30
  • Published : 2021.08.31

Abstract

In this work, we tested commercial organic solvent nanofiltration (OSN) membranes using both in-house dead-end and crossflow systems. Four different crosslinked polyimide Duramem (DM) OSN membranes with various MWCO (molecular weight cut off) values were tested in organic solvents such as ethanol, N,N-dimethylformamide, acetone and acetonitrile. The membranes exhibited more reliable and reproducible performance in the crossflow system, and the performance changed significantly depending in the physical properties of the testing solvent. This is due to the initial stabilization period via pressure-induced compaction phenomenon, which can be vastly different between membrane samples. Hence, to obtain reliable and reproducible results, crossflow system is the preferred choice.

본 연구에서는 Dead-end와 Crossflow 시스템을 사용하여 유기용매 나노여과(Organic Solvent Nanofiltration, OSN) 상용분리막의 성능을 분석하였다. 가교된 polyimide 소재 기반의 Duramem (DM) OSN 분리막의 성능을 ethanol, dimethylformamide (DMF), acetone, acetonitrile 용매에서의 성능을 분석하였다. 네 종류의 분획분자량 성능을 갖는 DM 분리막의 성능을 평가하였을 때 dead-end보다 Crossflow에서 조금 더 정확하고 신뢰성 높은 결과를 얻을 수 있었으며, 동일한 분리막이더라도 용매의 특성에 따라 투과도와 선택도 차이가 크게 난다는 것을 확인할 수 있었다. 이는 압밀화현상으로 인한 초기 안정화 기간의 차이 때문인 것으로 판단되며 분리막마다 안정화기간이 다르므로 신뢰성 높은 결과를 얻기 위해선 Crossflow 시스템을 활용하는 것이 더 적합한 것으로 보인다.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20202020800330, Development and demonstration of energy efficient reaction-separation·purification process for fine chemical industry).

References

  1. X. Li, Y. Liu, J. Wang, J. Gascon, J. Li, B. Van der Bruggen, Metal-organic frameworks based membranes for liquid separation, Chem. Soc. Rev., 46(23), 7124-7144 (2017). https://doi.org/10.1039/C7CS00575J
  2. S.-L. Wee, C.-T. Tye, S. Bhatia, Membrane separation process-Pervaporation through zeolite membrane, Sep. Purif. Technol., 63(3), 500-516 (2008). https://doi.org/10.1016/j.seppur.2008.07.010
  3. M. Amirilargani, M. Sadrzadeh, E. Sudholter, L. De Smet, Surface modification methods of organic solvent nanofiltration membranes, Chem. Eng. J., 289, 562-582 (2016). https://doi.org/10.1016/j.cej.2015.12.062
  4. M. Priske, M. Lazar, C. Schnitzer, G. Baumgarten, Recent applications of organic solvent nanofiltration, Chemie Ingenieur Technik, 88(1-2), 39-49 (2016). https://doi.org/10.1002/cite.201500084
  5. C. Li, S. Li, L. Tian, J. Zhang, B. Su, M. Z. Hu, Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN), J. Memb. Sci., 572, 520-531 (2019). https://doi.org/10.1016/j.memsci.2018.11.005
  6. S. Hermans, H. Marien, C. Van Goethem, I. F. Vankelecom, Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration, Curr Opin Chem Eng, 8, 45-54 (2015).
  7. D. B. Shinde, G. Sheng, X. Li, M. Ostwal, A.-H. Emwas, K.-W. Huang, Z. Lai, Crystalline 2D covalent organic framework membranes for high-flux organic solvent Nanofiltration, J. Am. Chem. Soc., 140(43), 14342-14349 (2018). https://doi.org/10.1021/jacs.8b08788
  8. F. Fei, H. A. Le Phuong, C. F. Blanford, G. Szekely, Tailoring the performance of organic solvent nanofiltration membranes with biophenol coatings, ACS Appl Polym Mater, 1(3), 452-460 (2019). https://doi.org/10.1021/acsapm.8b00161
  9. L. Peeva, J. da Silva Burgal, I. Valtcheva, A. G. Livingston, Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade, Chem. Eng. Sci., 116, 183-194 (2014). https://doi.org/10.1016/j.ces.2014.04.022
  10. Y. C. Xu, Y. P. Tang, L. F. Liu, Z. H. Guo, L. Shao, Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy, J. Memb. Sci., 526, 32-42 (2017). https://doi.org/10.1016/j.memsci.2016.12.026
  11. M. Buonomenna, J. Bae, Organic solvent nanofiltration in pharmaceutical industry, Sep. Purif. Rev., 44(2), 157-182 (2015). https://doi.org/10.1080/15422119.2014.918884
  12. G. Szekely, J. Bandarra, W. Heggie, B. Sellergren, F. C. Ferreira, Organic solvent nanofiltration: A platform for removal of genotoxins from active pharmaceutical ingredients, J. Memb. Sci., 381(1-2), 21-33 (2011). https://doi.org/10.1016/j.memsci.2011.07.007
  13. J. Geens, B. De Witte, B. Van der Bruggen, Removal of API's (active pharmaceutical ingredients) from organic solvents by nanofiltration, Sep. Sci. Technol., 42(11), 2435-2449 (2007). https://doi.org/10.1080/01496390701477063
  14. J. P. Sheth, Y. Qin, K. K. Sirkar, B. C. Baltzis, Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing, J. Memb. Sci., 211(2), 251-261 (2003). https://doi.org/10.1016/S0376-7388(02)00423-4
  15. M. T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235(1-3), 199-244 (2009). https://doi.org/10.1016/j.desal.2007.10.042
  16. R. M. Gould, L. S. White, C. R. Wildemuth, Membrane separation in solvent lube dewaxing, Environ. Prog., 20(1), 12-16 (2001). https://doi.org/10.1002/ep.670200110
  17. S. R. Hosseinabadi, K. Wyns, V. Meynen, R. Carleer, P. Adriaensens, A. Buekenhoudt, B. Van der Bruggen, Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes, J. Memb. Sci., 454, 496-504 (2014). https://doi.org/10.1016/j.memsci.2013.12.032
  18. L. S. White, A. R. Nitsch, Solvent recovery from lube oil filtrates with a polyimide membrane, J. Memb. Sci., 179(1-2), 267-274 (2000). https://doi.org/10.1016/S0376-7388(00)00517-2
  19. A. V. Volkov, G. A. Korneeva, G. F. Tereshchenko, Organic solvent nanofiltration: prospects and application, Russ. Chem. Rev., 77(11), 983 (2008). https://doi.org/10.1070/RC2008v077n11ABEH003795
  20. L. S. White, Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, J. Memb. Sci., 286(1-2), 26-35 (2006). https://doi.org/10.1016/j.memsci.2006.09.006
  21. L. P. Rama, M. Cheryan, N. Rajagopalan, Solvent recovery and partial deacidification of vegetable oils by membrane technology, Lipid/fett, 98(1), 10-14 (1996).
  22. G. M. Shi, M. H. D. A. Farahani, J. Y. Liu, T.-S. Chung, Separation of vegetable oil compounds and solvent recovery using commercial organic solvent nanofiltration membranes, J. Memb. Sci., 588, 117202 (2019). https://doi.org/10.1016/j.memsci.2019.117202
  23. K. Werth, P. Kaupenjohann, M. Skiborowski, The potential of organic solvent nanofiltration processes for oleochemical industry. Sep. Purif. Technol., 182, 185-196 (2017). https://doi.org/10.1016/j.seppur.2017.03.050
  24. S. Darvishmanesh, T. Robberecht, P. Luis, J. Degreve, B. Van der Bruggen, Performance of nanofiltration membranes for solvent purification in the oil industry, J. Am. Oil Chem. Soc., 88(8), 1255-1261 (2011). https://doi.org/10.1007/s11746-011-1779-y
  25. H.-t. Wong, C. J. Pink, F. C. Ferreira, A. G. Livingston, Recovery and reuse of ionic liquids and palladium catalyst for Suzuki reactions using organic solvent nanofiltration, Green Chem., 8(4), 373-379 (2006). https://doi.org/10.1039/b516778g
  26. J. M. Dreimann, M. Skiborowski, A. Behr, A. J. Vorholt, Recycling homogeneous catalysts simply by organic solvent nanofiltration: new ways to efficient catalysis, ChemCatChem, 8(21), 3330-3333 (2016). https://doi.org/10.1002/cctc.201601018
  27. D. W. Kim, Review on graphene oxide-based nanofiltration membrane, Membr. J., 29(3), 130-139 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.130
  28. E. Kim, R. Patel, Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration, Membr. J., 31(1), 35-51 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.1.35
  29. H. Richter, M. Weyd, A. Simon, J.-T. Kuhnert, C. Gunther, I. Voigt, A. Michaelis, Zeolite Membranes: Functionalizing of Properties by Tailored Compositions, Membr. J., 27(6), 469-476 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.469
  30. A. F. Ismail, L. P. Yean, Review on the development of defect-free and ultrathin-skinned asymmetric membranes for gas separation through manipulation of phase inversion and rheological factors, J. Appl. Polym. Sci., 88(2), 442-451 (2003). https://doi.org/10.1002/app.11744
  31. P. Vandezande, X. Li, L. E. Gevers, I. F. Vankelecom, High throughput study of phase inversion parameters for polyimide-based SRNF membranes, J. Memb. Sci., 330(1-2), 307-318 (2009). https://doi.org/10.1016/j.memsci.2008.12.068
  32. H. Tsai, Y. Ciou, C. Hu, K. Lee, D. Yu, J. Lai, Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes, J. Memb. Sci., 255(1-2), 33-47 (2005). https://doi.org/10.1016/j.memsci.2004.09.052
  33. A. K. Holda, I. F. Vankelecom, Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part B: Influence of low molecular weight additives, J. Memb. Sci., 450, 499-511 (2014). https://doi.org/10.1016/j.memsci.2013.08.051
  34. T. Xiao, P. Wang, X. Yang, X. Cai, J. Lu, Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications, J. Memb. Sci., 489, 160-174 (2015). https://doi.org/10.1016/j.memsci.2015.03.081
  35. M. H. D. A. Farahani, T.-S. Chung, A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN), Sep. Purif. Technol., 209, 182-192 (2019). https://doi.org/10.1016/j.seppur.2018.07.026
  36. Y. Sun, S. Zhou, G. Qin, J. Guo, Q. Zhang, S. Li,S. Zhang, A chemical-induced crystallization strategy to fabricate poly (ether ether ketone) asymmetric membranes for organic solvent nanofiltration, J. Memb. Sci., 620, 118899 (2021). https://doi.org/10.1016/j.memsci.2020.118899
  37. L. Xia, J. Ren, M. Weyd, J. R. McCutcheon, Ceramic-supported thin film composite membrane for organic solvent nanofiltration, J. Memb. Sci., 563, 857-863 (2018). https://doi.org/10.1016/j.memsci.2018.05.069
  38. S.-M. Kim, S. Hong, B.-T. Duy Nguyen, H.-Y. Nguyen Thi, S.-H. Park, J.-F. Kim, Effect of Additives during Interfacial Polymerization Reaction for Fabrication of Organic Solvent Nanofiltration (OSN) Membranes, Polymers, 13(11), 1716 (2021). https://doi.org/10.3390/polym13111716
  39. Y. S. Toh, F. Lim, A. Livingston, Polymeric membranes for nanofiltration in polar aprotic solvents, J. Memb. Sci., 301(1-2), 3-10 (2007). https://doi.org/10.1016/j.memsci.2007.06.034
  40. I. Soroko, M. Sairam, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part C. Effect of polyimide characteristics, J. Memb. Sci., 381(1-2), 172-182 (2011). https://doi.org/10.1016/j.memsci.2011.07.029
  41. I. Soroko, Y. Bhole, A. G. Livingston, Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes, Green Chem., 13(1), 162-168 (2011). https://doi.org/10.1039/C0GC00155D
  42. Y. H. See-Toh, F. C. Ferreira, A. G. Livingston, The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes, J. Memb. Sci., 299(1-2), 236-250 (2007). https://doi.org/10.1016/j.memsci.2007.04.047
  43. S. Darvishmanesh, L. Firoozpour, J. Vanneste, P. Luis, J. Degreve, B. Van der Bruggen, Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry: experiments and simulation, Green Chem., 13(12), 3476-3483 (2011). https://doi.org/10.1039/c1gc15462a
  44. S. K. Lim, K. Goh, T.-H. Bae, R. Wang, Polymer-based membranes for solvent-resistant nanofiltration: A review, Chin. J. Chem. Eng., 25(11), 1653-1675 (2017). https://doi.org/10.1016/j.cjche.2017.05.009
  45. K. Vanherck, G. Koeckelberghs, I. F. Vankelecom, Crosslinking polyimides for membrane applications: A review, Prog. Polym. Sci., 38(6), 874-896 (2013). https://doi.org/10.1016/j.progpolymsci.2012.11.001
  46. E. Arkhangelsky, A. Duek, V. Gitis, Maximal pore size in UF membranes, J. Memb. Sci., 394, 89-97 (2012). https://doi.org/10.1016/j.memsci.2011.12.031
  47. J. Ren, Z. Li, F.-S. Wong, A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes, J. Memb. Sci., 279(1-2), 558-569 (2006). https://doi.org/10.1016/j.memsci.2005.12.052
  48. H. Sun, D. Qi, J. Xu, S. Juan, C. Zhe, Fractionation of polysaccharides from rapeseed by ultra-filtration: Effect of molecular pore size and operation conditions on the membrane performance, Sep. Purif. Technol., 80(3), 670-676 (2011). https://doi.org/10.1016/j.seppur.2011.06.038
  49. M. Janssen, C. Muller, D. Vogt, Recent advances in the recycling of homogeneous catalysts using membrane separation. Green Chem., 13(9), 2247-2257 (2011). https://doi.org/10.1039/c1gc15264e
  50. P. Vandezande, L. E. Gevers, I. F. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level, Chem. Soc. Rev., 37(2), 365-405 (2008). https://doi.org/10.1039/B610848M
  51. L. G. Peeva, E. Gibbins, S. S. Luthra, L. S. White, R. P. Stateva, A. G. Livingston, Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration, J. Memb. Sci., 236(1-2), 121-136 (2004). https://doi.org/10.1016/j.memsci.2004.03.004
  52. A. Y. Kirschner, Y.-H. Cheng, D. R. Paul, R. W. Field, B. D. Freeman, Fouling mechanisms in constant flux crossflow ultrafiltration, J. Memb. Sci., 574, 65-75 (2019). https://doi.org/10.1016/j.memsci.2018.12.001
  53. A. Imbrogno, A. I. Schafer, Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end), J. Memb. Sci., 585, 67-80 (2019). https://doi.org/10.1016/j.memsci.2019.04.035
  54. S. S. Sablani, M. F. A. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review, Desalination, 141(3), 269-289 (2001). https://doi.org/10.1016/S0011-9164(01)85005-0
  55. S. Darvishmanesh, J. Degreve, B. Van der Bruggen, Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection, PCCP, 12(40), 13333-13342 (2010). https://doi.org/10.1039/c0cp00230e
  56. S. Karan, Z. Jiang, A. G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science, 348(6241), 1347-1351 (2015). https://doi.org/10.1126/science.aaa5058