DOI QR코드

DOI QR Code

Study on Commercially Available Anion Exchange Membrane for Alkaline Water Eectrolysis

알칼리 수전해를 위한 상용 음이온교환막에 관한 연구

  • 박주왕 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2021.08.03
  • Accepted : 2021.08.26
  • Published : 2021.08.31

Abstract

To evaluate the possibility as a separator in alkaline water electrolysis, the thermal stability, ion conductivity and durability of 5 commercially available anion exchange membranes were tested. The thermal stability of FAAM-PK-75 and FAAM-40 membrane analyzed by thermo-gravimetric analysis (TGA) showed good performance compared to the other three types of AEM, AHO, and AHA membrane. The ion conductivity of AEM membrane measured in 7 M KOH solution at 25℃ and 80℃ had a higher value of about 4~17 times compared to the other membranes. The durability of FAAM-PK-75 tested in 7 M KOH solution at 25℃ was high compared to the other membranes.

알칼리 수전해용 격막으로 사용가능성을 평가하기 위해 5종류의 상용 음이온교환막의 열적안정성, 이온전도도, 내구성을 평가하였다. TGA (thermo-gravimetric analysis)로 분석한 열적안정성은 FAAM-PK-75와 FAAM-40 막이 다른 3종류의 AEM, AHO, AHA 막과 비교하여 좋은 성능을 보였다. 25℃와 80℃, 7 M KOH 수용액에서의 이온전도도는 AEM막이 다른 막과 비교하여 약 4~17배 높은 값을 보였다. 25℃, 7 M KOH 수용액에서 측정한 내구성은 FAAM-PK-75막이 다른 막과 비교하여 안정하였다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 "중소기업기술혁신개발사업(S2840782)"으로 추진된 것으로 중소벤처기업부의 재정지원에 감사드립니다.

References

  1. I. Vincent, D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", Renewable and Sustainable Energy Reviews, 81, 1690 (2018). https://doi.org/10.1016/j.rser.2017.05.258
  2. G.-J. Hwang, H.-S. Choi, "Hydrogen production systems through water electrolysis", Membr. J., 27(6), 477 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.477
  3. X. Wenguo, C. Yingying, "Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors", Energy Fuels, 21, 2272 (2007). https://doi.org/10.1021/ef060517h
  4. S. Ahmed, M. Krumpelt. "Hydrogen from hydrocarbon fuels for fuel cells", Int. J. Hydrogen Energy, 26, 291 (2001). https://doi.org/10.1016/S0360-3199(00)00097-5
  5. M. Ni, DYC. Leung, MKH. Leung, K. Sumathy, "An overview of hydrogen production from biomass", Fuel Process Technol, 87, 461 (2006). https://doi.org/10.1016/j.fuproc.2005.11.003
  6. G.-J. Hwang, K.-S. Kang, H.-J. Han and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans. of the Korean Hydrogen and New Energy Society, 18, 95 (2007).
  7. H. Wendt, H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", J. Appl. Electrochem., 19, 605 (1989). https://doi.org/10.1007/BF01022121
  8. V. Rosa, "New materials for water electrolysis diaphragms", Int. J. Hydrogen Energy, 20, 697 (1995). https://doi.org/10.1016/0360-3199(94)00119-K
  9. W. Hu, "A novel cathode for alkaline water electrolysis", Int. J. Hydrogen Energy, 22, 621 (1997). https://doi.org/10.1016/S0360-3199(96)00191-7
  10. H-S. Choi, C-H. Ryu, S-G. Lee, C-S. Byun, G-J. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans. of the Korean Hydrogen and New Energy Society, 22(2), 184 (2011). https://doi.org/10.7316/KHNES.2011.22.2.184
  11. G.-J. Hwang, H. Ohya, "Preparation of anion exchange membrane based on block copolymers. Part I: Amination of the chloromethylated copolymers", J. Membr. Sci., 140, 195 (1998). https://doi.org/10.1016/S0376-7388(97)00283-4
  12. M. Khan, C. Zheng, A. N. Mondal, Md. Masem Hossain, B. Wu, K. Emmanuel, L. Wu, T. Xu, "Preparation of anion exchange membrane from BPPO and dimethylethanolamine for electrodialysis", Desalination, 402, 10 (2017). https://doi.org/10.1016/j.desal.2016.09.019
  13. Y. Liu, S. Yang, Y. Chen, J. Liao, A. Sotto, J. Shen, "Preparation of water-based anion exchange membrane from PVA for antifouling in the electrodialysis process", J. Membr. Sci., 570, 130 (2019). https://doi.org/10.1016/j.memsci.2018.10.011
  14. S. Doi, M. Yasukawa, Y. Kakihana, M. Higa, "Alkali stack on anion exchange membranes with PVC backing and binder: effect on performance and correlation between them", J. Membr. Sci., 573, 85 (2019). https://doi.org/10.1016/j.memsci.2018.11.065
  15. X. Zheng, S. Song, J. Yang, J Wang, L. Wang, "4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell", Euro. Poly. J., 112, 581 (2019). https://doi.org/10.1016/j.eurpolymj.2018.10.020
  16. J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., 581, 82 (2019). https://doi.org/10.1016/j.memsci.2019.03.046
  17. Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, T. Xu, "Guiding the self-assembly of hyper-branched anion exchange membranes utilized in alkaline fuel cells", J. Membr. Sci., 573, 595 (2019). https://doi.org/10.1016/j.memsci.2018.12.049
  18. M. Irfan, E. Bakangura, N. U. Afsar, Md. Masem Hossain, J. Ran, T. Xu, "Preparation and performance evaluation of novel alkaline stable anion exchange membranes", J. Power. Soc., 355, 171 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.146
  19. B. Eriksson, H. Grimler, A. Carlson, H. Ekstrom, R. W. Lindstrom, G. Lindbergh, C. Lagergren, "Quantifying water transfer in anion exchange membrane fuel cells", Int. J. Hydrogen Energy, 44, 4930 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.185
  20. J. Hou, X. Wang, Y. Liu, Q. Ge, Z. Yang, L. Wu, T. Xu, "Witting reaction constructed an alkaline stable anion exchange membrane", J. Membr. Sci., 518, 282 (2016). https://doi.org/10.1016/j.memsci.2016.07.020
  21. C.-H. Woo, "Current patents and papers research trend of fuel cell membrane", Membr. J., 26(6), 407 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.407
  22. J.-P. Hwang, C.-H. Lee, Y.-T. Jeong, "Research trends and prospects of reverse electrodialysis membranes", Membr. J., 27(2), 109 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.109
  23. G. Shukla, V. K. Shahi, "Amine functionalized graphene oxide C16 chain grafted with poly(ether sulfone) by DABCO coupling: anaion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019). https://doi.org/10.1016/j.memsci.2019.01.008
  24. L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, M.C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: current status and challenges", Applied Energy, 233, 622 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
  25. J.-M. Lee, M.-S. Lee, K.-S. Nam, J-D. Jeon, Y.-G. Yoon, Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27(5), 415 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.415
  26. D.-J. Kim, S.-Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22(5), 285 (2012).
  27. J. Hou, Y. Liu, Y. Liu, L. Wu, Z. Yang, T. Xu, "Self-healing anion exchange membrane for pH 7 redox flow batteries", Chem. Eng. Sci., 201, 167 (2019). https://doi.org/10.1016/j.ces.2019.02.033
  28. G.-J. Hwang, S.-W. Kim, D.-M. In, D.-Y. Lee, C.-H. Ryu, "Application of the commercial ion exchange membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 60, 360 (2018). https://doi.org/10.1016/j.jiec.2017.11.023
  29. H.-S. Choi, Y.-H. Oh, C.-H. Ryu, G.-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Inst. Chem. Eng., 45, 2920 (2014). https://doi.org/10.1016/j.jtice.2014.08.032
  30. G. J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, H.-S. Choi, Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis, Korean J. Chem. Eng., 32(9), 1896 (2015). https://doi.org/10.1007/s11814-015-0005-2
  31. Y.-C. Cao, X. Wu and K. Scott, A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalyst, Int. J. Hydrogen Energy, 37, 9524 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.116
  32. X. Wu and K. Scott, A polymethacrylate-based quaternary ammonium OH- ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers, J. Power Sources, 214, 124 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.069
  33. E. Park, C. B. Capuano, K. E. Ayers, C. Bae, Chemically durable polymer electrolytes for solid-state alkaline water electrolysis, J. Power Sources, 375, 367 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.090
  34. L. A. Diaz, R. E. Coppola, G. C. Abuin, R. Escudero-Cid, D. Herranz, P. Ocon, Alkali-doped polyvinyl alcohol-polybenzimidazole membranes for alkaline water electrolysis, J. Memb. Sci., 535, 45 (2017). https://doi.org/10.1016/j.memsci.2017.04.021
  35. D. Aili, M. K. Hansen, J. W. Andreasen, J. Zhang, J. O. Jensen, N. J. Bjerrum, Q. L. I., Porous poly (perfluorosulfonic acid) membranes for alkaline water electrolysis, J. Memb. Sci., 493, 589 (2015). https://doi.org/10.1016/j.memsci.2015.06.057
  36. A. Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, S. Sunde, "Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis", Int. J. Hydrogen Energy, 45(53), 28272 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.202
  37. I. Vincent, D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", Renew. Sustain. Energy Rev., 81, 1690 (2018). https://doi.org/10.1016/j.rser.2017.05.258
  38. H. Ito, N. Kawaguchi, S. Someya, T. Munakata, "Pressurized operation of anion exchange membrane water electrolysis", Electrochim. Acta, 297, 188 (2019). https://doi.org/10.1016/j.electacta.2018.11.077
  39. I. Vincent, A. Kruger, D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchaneg membrane electrolysis", Int. J. Hydrogen Energy, 42, 10752 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.069