DOI QR코드

DOI QR Code

Molecular Mechanisms Underlying Motor Axon Guidance in Drosophila

  • Jeong, Sangyun (Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University)
  • Received : 2021.05.18
  • Accepted : 2021.07.02
  • Published : 2021.08.31

Abstract

Decoding the molecular mechanisms underlying axon guidance is key to precise understanding of how complex neural circuits form during neural development. Although substantial progress has been made over the last three decades in identifying numerous axon guidance molecules and their functional roles, little is known about how these guidance molecules collaborate to steer growth cones to their correct targets. Recent studies in Drosophila point to the importance of the combinatorial action of guidance molecules, and further show that selective fasciculation and defasciculation at specific choice points serve as a fundamental strategy for motor axon guidance. Here, I discuss how attractive and repulsive guidance cues cooperate to ensure the recognition of specific choice points that are inextricably linked to selective fasciculation and defasciculation, and correct pathfinding decision-making.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (2018R1A2B6008037), and research funds of Jeonbuk National University in 2019.

References

  1. Abrell, S. and Jackle, H. (2001). Axon guidance of Drosophila SNb motoneurons depends on the cooperative action of muscular Kruppel and neuronal capricious activities. Mech. Dev. 109, 3-12. https://doi.org/10.1016/S0925-4773(01)00511-1
  2. Arzan Zarin, A. and Labrador, J.P. (2019). Motor axon guidance in Drosophila. Semin. Cell Dev. Biol. 85, 36-47. https://doi.org/10.1016/j.semcdb.2017.11.013
  3. Ayoob, J.C., Terman, J.R., and Kolodkin, A.L. (2006). Drosophila Plexin B is a Sema-2a receptor required for axon guidance. Development 133, 2125-2135. https://doi.org/10.1242/dev.02380
  4. Bashaw, G.J. and Klein, R. (2010). Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2, a001941. https://doi.org/10.1101/cshperspect.a001941
  5. Bate, M. (1990). The embryonic development of larval muscles in Drosophila. Development 110, 791-804. https://doi.org/10.1242/dev.110.3.791
  6. Bonanomi, D. and Pfaff, S.L. (2010). Motor axon pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001735. https://doi.org/10.1101/cshperspect.a001735
  7. Bossing, T. and Brand, A.H. (2002). Dephrin, a transmembrane ephrin with a unique structure, prevents interneuronal axons from exiting the Drosophila embryonic CNS. Development 129, 4205-4218. https://doi.org/10.1242/dev.129.18.4205
  8. Brose, K., Bland, K.S., Wang, K.H., Arnott, D., Henzel, W., Goodman, C.S., Tessier-Lavigne, M., and Kidd, T. (1999). Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795-806. https://doi.org/10.1016/S0092-8674(00)80590-5
  9. Chan, S.S., Zheng, H., Su, M.W., Wilk, R., Killeen, M.T., Hedgecock, E.M., and Culotti, J.G. (1996). UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187-195. https://doi.org/10.1016/S0092-8674(00)81337-9
  10. Chedotal, A. and Richards, L.J. (2010). Wiring the brain: the biology of neuronal guidance. Cold Spring Harb. Perspect. Biol. 2, a001917. https://doi.org/10.1101/cshperspect.a001917
  11. Chiba, A., Snow, P., Keshishian, H., and Hotta, Y. (1995). Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature 374, 166-168. https://doi.org/10.1038/374166a0
  12. Desai, C.J., Gindhart, J.G., Jr., Goldstein, L.S., and Zinn, K. (1996). Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell 84, 599-609. https://doi.org/10.1016/S0092-8674(00)81035-1
  13. Dickson, B.J. (2002). Molecular mechanisms of axon guidance. Science 298, 1959-1964. https://doi.org/10.1126/science.1072165
  14. Dorskind, J.M. and Kolodkin, A.L. (2021). Revisiting and refining roles of neural guidance cues in circuit assembly. Curr. Opin. Neurobiol. 66, 10-21. https://doi.org/10.1016/j.conb.2020.07.005
  15. Engle, E.C. (2010). Human genetic disorders of axon guidance. Cold Spring Harb. Perspect. Biol. 2, a001784. https://doi.org/10.1101/cshperspect.a001784
  16. Fambrough, D. and Goodman, C.S. (1996). The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell 87, 1049-1058. https://doi.org/10.1016/S0092-8674(00)81799-7
  17. Grenningloh, G., Rehm, E.J., and Goodman, C.S. (1991). Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell 67, 45-57. https://doi.org/10.1016/0092-8674(91)90571-F
  18. Hall, S.G. and Bieber, A.J. (1997). Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning. J. Neurobiol. 32, 325-340. https://doi.org/10.1002/(SICI)1097-4695(199703)32:3<325::AID-NEU6>3.0.CO;2-9
  19. Hamilton, B.A., Ho, A., and Zinn, K. (1995). Targeted mutagenesis and genetic analysis of a Drosophila receptor-linked protein tyrosine phosphatase gene. Rouxs Arch. Dev. Biol. 204, 187-192. https://doi.org/10.1007/BF00241271
  20. Hao, J.C., Yu, T.W., Fujisawa, K., Culotti, J.G., Gengyo-Ando, K., Mitani, S., Moulder, G., Barstead, R., Tessier-Lavigne, M., and Bargmann, C.I. (2001). C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32, 25-38. https://doi.org/10.1016/S0896-6273(01)00448-2
  21. Jeon, M., Nguyen, H., Bahri, S., and Zinn, K. (2008). Redundancy and compensation in axon guidance: genetic analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Dev. 3, 3. https://doi.org/10.1186/1749-8104-3-3
  22. Jeong, S. (2017). Visualization of the axonal projection pattern of embryonic motor neurons in Drosophila. J. Vis. Exp. (124), 55830.
  23. Jeong, S., Juhaszova, K., and Kolodkin, A.L. (2012). The control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in Drosophila. Neuron 76, 721-734. https://doi.org/10.1016/j.neuron.2012.09.018
  24. Jeong, S., Yang, D., Hong, Y.G., Mitchell, S.P., Brown, M.P., and Kolodkin, A.L. (2017). Varicose and cheerio collaborate with pebble to mediate semaphorin-1a reverse signaling in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 114, E8254-E8263. https://doi.org/10.1073/pnas.1713010114
  25. Johnson, K.G. and Van Vactor, D. (2003). Receptor protein tyrosine phosphatases in nervous system development. Physiol. Rev. 83, 1-24. https://doi.org/10.1152/physrev.00016.2002
  26. Kania, A. and Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17, 240-256. https://doi.org/10.1038/nrm.2015.16
  27. Keino-Masu, K., Masu, M., Hinck, L., Leonardo, E.D., Chan, S.S., Culotti, J.G., and Tessier-Lavigne, M. (1996). Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175-185. https://doi.org/10.1016/S0092-8674(00)81336-7
  28. Kidd, T., Bland, K.S., and Goodman, C.S. (1999). Slit is the midline repellent for the Robo receptor in Drosophila. Cell 96, 785-794. https://doi.org/10.1016/S0092-8674(00)80589-9
  29. Kolodkin, A.L. and Tessier-Lavigne, M. (2011). Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3, a001727. https://doi.org/10.1101/cshperspect.a001727
  30. Kolodziej, P.A., Timpe, L.C., Mitchell, K.J., Fried, S.R., Goodman, C.S., Jan, L.Y., and Jan, Y.N. (1996). frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197-204. https://doi.org/10.1016/S0092-8674(00)81338-0
  31. Krueger, N.X., Van Vactor, D., Wan, H.I., Gelbart, W.M., Goodman, C.S., and Saito, H. (1996). The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell 84, 611-622. https://doi.org/10.1016/S0092-8674(00)81036-3
  32. Landgraf, M., Baylies, M., and Bate, M. (1999). Muscle founder cells regulate defasciculation and targeting of motor axons in the Drosophila embryo. Curr. Biol. 9, 589-592. https://doi.org/10.1016/S0960-9822(99)80262-0
  33. Landgraf, M., Bossing, T., Technau, G.M., and Bate, M. (1997). The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642-9655. https://doi.org/10.1523/JNEUROSCI.17-24-09642.1997
  34. Landgraf, M. and Thor, S. (2006). Development of Drosophila moto-neurons: specification and morphology. Semin. Cell Dev. Biol. 17, 3-11. https://doi.org/10.1016/j.semcdb.2005.11.007
  35. Li, H., Watson, A., Olechwier, A., Anaya, M., Sorooshyari, S.K., Harnett, D.P., Lee, H.K., Vielmetter, J., Fares, M.A., Garcia, K.C., et al. (2017). Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. Elife 6, e28111. https://doi.org/10.7554/eLife.28111
  36. Li, H.S., Chen, J.H., Wu, W., Fagaly, T., Zhou, L., Yuan, W., Dupuis, S., Jiang, Z.H., Nash, W., Gick, C., et al. (1999). Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807-818. https://doi.org/10.1016/S0092-8674(00)80591-7
  37. Lin, D.M., Fetter, R.D., Kopczynski, C., Grenningloh, G., and Goodman, C.S. (1994). Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation. Neuron 13, 1055-1069. https://doi.org/10.1016/0896-6273(94)90045-0
  38. Lin, D.M. and Goodman, C.S. (1994). Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507-523. https://doi.org/10.1016/0896-6273(94)90022-1
  39. Liu, L., Tian, Y., Zhang, X.Y., Zhang, X., Li, T., Xie, W., and Han, J. (2017). Neurexin restricts axonal branching in columns by promoting ephrin clustering. Dev. Cell 41, 94-106.e4. https://doi.org/10.1016/j.devcel.2017.03.004
  40. Luxey, M., Berki, B., Heusermann, W., Fischer, S., and Tschopp, P. (2020). Development of the chick wing and leg neuromuscular systems and their plasticity in response to changes in digit numbers. Dev. Biol. 458, 133-140. https://doi.org/10.1016/j.ydbio.2019.10.035
  41. Nose, A., Mahajan, V.B., and Goodman, C.S. (1992). Connectin: a homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them in Drosophila. Cell 70, 553-567. https://doi.org/10.1016/0092-8674(92)90426-D
  42. Nose, A., Takeichi, M., and Goodman, C.S. (1994). Ectopic expression of connectin reveals a repulsive function during growth cone guidance and synapse formation. Neuron 13, 525-539. https://doi.org/10.1016/0896-6273(94)90023-X
  43. Ozkan, E., Carrillo, R.A., Eastman, C.L., Weiszmann, R., Waghray, D., Johnson, K.G., Zinn, K., Celniker, S.E., and Garcia, K.C. (2013). An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell 154, 228-239. https://doi.org/10.1016/j.cell.2013.06.006
  44. Pasterkamp, R.J. (2012). Getting neural circuits into shape with semaphorins. Nat. Rev. Neurosci. 13, 605-618. https://doi.org/10.1038/nrn3302
  45. Pipes, G.C., Lin, Q., Riley, S.E., and Goodman, C.S. (2001). The Beat generation: a multigene family encoding IgSF proteins related to the Beat axon guidance molecule in Drosophila. Development 128, 4545-4552. https://doi.org/10.1242/dev.128.22.4545
  46. Prokop, A., Landgraf, M., Rushton, E., Broadie, K., and Bate, M. (1996). Presynaptic development at the Drosophila neuromuscular junction: assembly and localization of presynaptic active zones. Neuron 17, 617-626. https://doi.org/10.1016/S0896-6273(00)80195-6
  47. Raper, J. and Mason, C. (2010). Cellular strategies of axonal pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001933. https://doi.org/10.1101/cshperspect.a001933
  48. Roh, S., Yang, D., and Jeong, S. (2016). Differential ligand regulation of PlexB signaling in motor neuron axon guidance in Drosophila. Int. J. Dev. Neurosci. 55, 34-40. https://doi.org/10.1016/j.ijdevneu.2016.09.006
  49. Sanes, J.R. and Yamagata, M. (2009). Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161-195. https://doi.org/10.1146/annurev.cellbio.24.110707.175402
  50. Sanes, J.R. and Zipursky, L. (2020). Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 1434-1435. https://doi.org/10.1016/j.cell.2020.05.046
  51. Schindelholz, B., Knirr, M., Warrior, R., and Zinn, K. (2001). Regulation of CNS and motor axon guidance in Drosophila by the receptor tyrosine phosphatase DPTP52F. Development 128, 4371-4382. https://doi.org/10.1242/dev.128.21.4371
  52. Siebert, M., Banovic, D., Goellner, B., and Aberle, H. (2009). Drosophila motor axons recognize and follow a Sidestep-labeled substrate pathway to reach their target fields. Genes Dev. 23, 1052-1062. https://doi.org/10.1101/gad.520509
  53. Sink, H., Rehm, E.J., Richstone, L., Bulls, Y.M., and Goodman, C.S. (2001). sidestep encodes a target-derived attractant essential for motor axon guidance in Drosophila. Cell 105, 57-67. https://doi.org/10.1016/S0092-8674(01)00296-3
  54. Sun, Q., Schindelholz, B., Knirr, M., Schmid, A., and Zinn, K. (2001). Complex genetic interactions among four receptor tyrosine phosphatases regulate axon guidance in Drosophila. Mol. Cell. Neurosci. 17, 274-291. https://doi.org/10.1006/mcne.2000.0939
  55. Takahashi, E., Dai, G., Wang, R., Ohki, K., Rosen, G.D., Galaburda, A.M., Grant, P.E., and Wedeen, V.J. (2010). Development of cerebral fiber pathways in cats revealed by diffusion spectrum imaging. Neuroimage 49, 1231-1240. https://doi.org/10.1016/j.neuroimage.2009.09.002
  56. Tessier-Lavigne, M. and Goodman, C.S. (1996). The molecular biology of axon guidance. Science 274, 1123-1133. https://doi.org/10.1126/science.274.5290.1123
  57. Thiebaut de Schotten, M., Dell'Acqua, F., Ratiu, P., Leslie, A., Howells, H., Cabanis, E., Iba-Zizen, M.T., Plaisant, O., Simmons, A., Dronkers, N.F., et al. (2015). From Phineas Gage and Monsieur Leborgne to H.M.: revisiting disconnection syndromes. Cereb. Cortex 25, 4812-4827. https://doi.org/10.1093/cercor/bhv173
  58. Van Vactor, D., Sink, H., Fambrough, D., Tsoo, R., and Goodman, C.S. (1993). Genes that control neuromuscular specificity in Drosophila. Cell 73, 1137-1153. https://doi.org/10.1016/0092-8674(93)90643-5
  59. Wang, L. and Marquardt, T. (2013). What axons tell each other: axon-axon signaling in nerve and circuit assembly. Curr. Opin. Neurobiol. 23, 974-982. https://doi.org/10.1016/j.conb.2013.08.004
  60. Winberg, M.L., Mitchell, K.J., and Goodman, C.S. (1998b). Genetic analysis of the mechanisms controlling target selection: complementary and combinatorial functions of netrins, semaphorins, and IgCAMs. Cell 93, 581-591. https://doi.org/10.1016/S0092-8674(00)81187-3
  61. Winberg, M.L., Noordermeer, J.N., Tamagnone, L., Comoglio, P.M., Spriggs, M.K., Tessier-Lavigne, M., and Goodman, C.S. (1998a). Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903-916. https://doi.org/10.1016/S0092-8674(00)81715-8
  62. Wu, Z., Sweeney, L.B., Ayoob, J.C., Chak, K., Andreone, B.J., Ohyama, T., Kerr, R., Luo, L., Zlatic, M., and Kolodkin, A.L. (2011). A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 70, 281-298. https://doi.org/10.1016/j.neuron.2011.02.050
  63. Yang, D.S., Roh, S., and Jeong, S. (2016). The axon guidance function of Rap1 small GTPase is independent of PlexA RasGAP activity in Drosophila. Dev. Biol. 418, 258-267. https://doi.org/10.1016/j.ydbio.2016.08.026
  64. Yu, H.H., Araj, H.H., Ralls, S.A., and Kolodkin, A.L. (1998). The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 20, 207-220. https://doi.org/10.1016/S0896-6273(00)80450-X
  65. Yu, H.H., Huang, A.S., and Kolodkin, A.L. (2000). Semaphorin-1a acts in concert with the cell adhesion molecules fasciclin II and connectin to regulate axon fasciculation in Drosophila. Genetics 156, 723-731. https://doi.org/10.1093/genetics/156.2.723