• Title/Summary/Keyword: axon guidance

Search Result 19, Processing Time 0.031 seconds

Molecular Mechanisms Underlying Motor Axon Guidance in Drosophila

  • Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.549-556
    • /
    • 2021
  • Decoding the molecular mechanisms underlying axon guidance is key to precise understanding of how complex neural circuits form during neural development. Although substantial progress has been made over the last three decades in identifying numerous axon guidance molecules and their functional roles, little is known about how these guidance molecules collaborate to steer growth cones to their correct targets. Recent studies in Drosophila point to the importance of the combinatorial action of guidance molecules, and further show that selective fasciculation and defasciculation at specific choice points serve as a fundamental strategy for motor axon guidance. Here, I discuss how attractive and repulsive guidance cues cooperate to ensure the recognition of specific choice points that are inextricably linked to selective fasciculation and defasciculation, and correct pathfinding decision-making.

Identification of cis-Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System

  • Hong, Young Gi;Kang, Bongsu;Lee, Seongsoo;Lee, Youngseok;Ju, Bong-Gun;Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.228-235
    • /
    • 2020
  • The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema-1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.

Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis

  • Choi, Boyoon;Kim, Hyeyoung;Jang, Jungim;Park, Sihyeon;Jung, Hosung
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.846-854
    • /
    • 2022
  • Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.

Local protein synthesis in neuronal axons: why and how we study

  • Kim, Eunjin;Jung, Hosung
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.139-146
    • /
    • 2015
  • Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expression solely by translational control. Different stimuli to axons, such as guidance cues, growth factors, and nerve injury, promote translation of selective mRNAs, a process required for the axon's ability to respond to these cues. One of the critical questions in the field of axonal protein synthesis is how mRNA-specific local translation is regulated by extracellular cues. Here, we review current experimental techniques that can be used to answer this question. Furthermore, we discuss how new technologies can help us understand what biological processes are regulated by axonal protein synthesis in vivo.

Neurons-on-a-Chip: In Vitro NeuroTools

  • Hong, Nari;Nam, Yoonkey
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.

Identification of pathways and genes associated with cerebral palsy

  • Zhu, Qingwen;Ni, Yufei;Wang, Jing;Yin, Honggang;Zhang, Qin;Zhang, Lingli;Bian, Wenjun;Liang, Bo;Kong, Lingyin;Xuan, Liming;Lu, Naru
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1339-1349
    • /
    • 2018
  • Cerebral palsy (CP) is a non-progressive neurological disease, of which susceptibility is linked to genetic and environmental risk factors. More and more studies have shown that CP might be caused by multiple genetic factors, similar to other neurodevelopmental disorders. Due to the high genetic heterogeneity of CP, we focused on investigating related molecular pathways. Ten children with CP were collected for whole-exome sequencing by next-generation sequencing (NGS) technology. Customized processes were used to identify potential pathogenic pathways and variants. Three pathways (axon guidance, transmission across chemical synapses, protein-protein interactions at synapses) with twenty-three genes were identified to be highly correlated with CP. This study showed that the three pathways associated with CP might be the molecular mechanism of pathogenesis. These findings could provide useful clues for developing pathway-based pharmacotherapies. Further studies are required to confirm potential roles for these pathways in the pathogenesis of CP.

Cellular and molecular change including nerve regeneration after peripheral nerve injury (말초신경 손상 후 재생과 관련된 세포적, 분자적 변화)

  • Baek Su-Jeong;Kim Dong-Hyun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.415-432
    • /
    • 2000
  • In mammals. axotomy of peripheral nerve leads to a complex. These events include swelling of cell body, disappearance of Nissl substance. Proximal and distal axon undergoes a variable deriable degree of traumatic degeneration and wallerian degeneration, respectively. Nerve injury may result in cell death or regeneration. Molecular changes include proliferation of Schwann cells, upregulation of neurotropism, neural cell adhesion molecules and cytokine. Also growth cone plays an essential role in axon guidance through interaction of cytoskeleton. We review cellular and molecular events after nerve injury and describe nerve regeneration and associated proteins.

  • PDF

Multiple Regulation of Roundabout (Robo) Phosphorylation in a Heterologous Cell System

  • Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • Roundabout (Robo) is the transmembrane receptor for slit, the neuronal guidance molecule. In this study, the tyrosine phosphorylation of Robo was observed in Robo-transfected human embryonic kidney cells and developing rat brains, and found to be increased by the treatment with protein kinase A activator, forskolin. In contrast, protein kinase C activation by phorbol-12-myristate-13-acetate decreased the phosphorylation of Robo. Intracellular calcium was required for the tyrosine phosphorylation. Furthermore, the transfection of an Eph receptor tyrosine kinase dramatically enhanced the tyrosine phosphorylation. These findings indicate that the tyrosine phosphorylation of Robo is regulated by multiple mechanisms, and that Eph receptor kinases may play a role in the regulation of tyrosine phosphorylation of Robo in the rat brain.

Imaging Single-mRNA Localization and Translation in Live Neurons

  • Lee, Byung Hun;Bae, Seong-Woo;Shim, Jaeyoun Jay;Park, Sung Young;Park, Hye Yoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.841-846
    • /
    • 2016
  • Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.